Loading…
Histone acetyltransferase activity of CBP is controlled by cyclin-dependent kinases and oncoprotein E1A
Transforming viral proteins such as E1A force cells through the restriction point of the cell cycle into S phase by forming complexes with two cellular proteins: the retinoblastoma protein (Rb), a transcriptional co-repressor, and CBP/p300, a transcriptional co-activator. These two proteins locally...
Saved in:
Published in: | Nature (London) 1998-11, Vol.396 (6707), p.184-186 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transforming viral proteins such as E1A force cells through the restriction point of the cell cycle into S phase by forming complexes with two cellular proteins: the retinoblastoma protein (Rb), a transcriptional co-repressor, and CBP/p300, a transcriptional co-activator. These two proteins locally influence chromatin structure: Rb recruits a histone deacetylase, whereas CBP is a histone acetyltransferase. Progression through the restriction point is triggered by phosphorylation of Rb, leading to disruption of Rb-associated repressive complexes and allowing the activation of S-phase genes. Here we show that CBP, like Rb, is controlled by phosphorylation at the G1/S boundary, increasing its histone acetyltransferase activity. This enzymatic activation is mimicked by E1A. |
---|---|
ISSN: | 0028-0836 |