Loading…

The Research of Gypsum Investment Mould Used as Forming Micro-Castings

By applying ultrasonic solidification, gypsum based micro casting mold with different chemical compositions were sintered at different temperatures. The influence of processing parameters and sintering temperature on the microstructure and surface roughness were investigated. Meanwhile, the effect o...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2014-04, Vol.609-610, p.557-564
Main Authors: Wang, Guo Tian, Fu, Heng Zhi, Li, Bang Sheng, Ren, Ming Xing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By applying ultrasonic solidification, gypsum based micro casting mold with different chemical compositions were sintered at different temperatures. The influence of processing parameters and sintering temperature on the microstructure and surface roughness were investigated. Meanwhile, the effect of sintering temperature on the bending strength was studied. The result showed that the nucleation rate of gypsum can be significantly improved under high temperature and pressure, which was caused by the effect of ultrasonic cavitation. Under the frequency of 100 KHz and the power of 200 W, 20 min, the morphology of gypsum transfers from flake and needle into near spherical after 20 min, and the grain size can be refined to around 500 nm. The value node of surface roughness occurs at the sintering temperature of 600 °C. The surface roughness is the lowest when the gypsum content is 60% and under the sintering temperature of 600 °C, which can reach Ra ~ 0.22 um. The bending strength of mold roughly increased with the increase of content of gypsum. There is no obvious rule for the mold strength with the change of sintering temperature. The mold strength reaches the highest value when the sintering temperature is 600°C.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.609-610.557