Loading…

Covalency in resonance-assisted halogen bonds demonstrated with cooperativity in N-halo-guanine quartets

Halogen bonds are shown to possess the same characteristics as hydrogen bonds: charge transfer, resonance assistance and cooperativity. This follows from the computational analyses of the structure and bonding in N-halo-base pairs and quartets. The objective was to achieve an understanding of the na...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2015-01, Vol.17 (3), p.1585-1592
Main Authors: Wolters, Lando P, Smits, Nicole W G, Guerra, Célia Fonseca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Halogen bonds are shown to possess the same characteristics as hydrogen bonds: charge transfer, resonance assistance and cooperativity. This follows from the computational analyses of the structure and bonding in N-halo-base pairs and quartets. The objective was to achieve an understanding of the nature of resonance-assisted halogen bonds (RAXB): how they resemble or differ from the better understood resonance-assisted hydrogen bonds (RAHB) in DNA. We present an accurate physical model of the RAXB based on the molecular orbital theory, which is derived from the corresponding energy decomposition analyses and study of the charge distribution. We show that the RAXB arise from classical electrostatic interaction and also receive strengthening from donor-acceptor interactions within the σ-electron system. Similar to RAHB, there is also a small stabilization by π-electron delocalization. This resemblance leads to prove cooperativity in N-halo-guanine quartets, which originates from the charge separation that occurs with donor-acceptor orbital interactions in the σ-electron system.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp03740e