Loading…

Minority-carrier lifetime and defect content of n-type silicon grown by the noncontact crucible method

We evaluate minority-carrier lifetime and defect content of n-type photovoltaic silicon grown by the noncontact crucible method (NOC-Si). Although bulk impurity concentrations are measured by inductively coupled plasma mass spectroscopy to be less than one part per million, homogeneously throughout...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2014-12, Vol.407, p.31-36
Main Authors: KIVAMBE, Maulid, POWELL, Douglas M, CASTELLANOS, Sergio, JENSEN, Mallory Ann, MORISHIGE, Ashley E, NAKAJIMA, Kazuo, MORISHITA, Kohei, MURAI, Ryota, BUONASSISI, Tonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We evaluate minority-carrier lifetime and defect content of n-type photovoltaic silicon grown by the noncontact crucible method (NOC-Si). Although bulk impurity concentrations are measured by inductively coupled plasma mass spectroscopy to be less than one part per million, homogeneously throughout the as-grown material we observe lifetimes in the ~150 mu s range, well below the theoretical entitlement of single-crystalline silicon. These observations suggest the presence of homogeneously distributed recombination-active point defects. We compare an industry-standard gettering profile to an extended gettering profile tailored for chromium extraction, to elucidate potential gains and limitations of impurity gettering. Near the ingot top, gettering improves lifetimes to 750 and > 1800 mu s for standard and extended profiles, respectively. Relatively lower gettered lifetimes are observed in wafers extracted from the ingot middle and bottom. In these regions, concentric-swirl patterns of low lifetime are revealed after gettering. We hypothesize that gettering removes a large fraction of fast-diffusing recombination-active impurities, while swirl microdefect regions reminiscent of Czochralski silicon can locally limit gettering efficiency and lifetime. Apart from these swirl microdefects, a low dislocation density of < 10 super(3) cm super(-2) is observed. The millisecond lifetimes and low dislocation density suggest that, by applying appropriate bulk microdefect and impurity control during growth and/or gettering, n-type NOC-Si can readily support solar cells with efficiencies > 23%.
ISSN:0022-0248
1873-5002
DOI:10.1016/j.jcrysgro.2014.08.021