Loading…
Current Functional Metagenomic Approaches Only Expand the Existing Protease Sequence Space, but does not Presently Add Any Novelty to it
Proteases are a fundamental function in many organisms and thus many ecosystems and yet they are rarely obtained in functional metagenomic screens. Here, we have isolated an active protease gene (M1-2; 613 amino acids) which resided in a 38.4 kb fosmid clone that showed a classical protease-positive...
Saved in:
Published in: | Current microbiology 2015-01, Vol.70 (1), p.19-26 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proteases are a fundamental function in many organisms and thus many ecosystems and yet they are rarely obtained in functional metagenomic screens. Here, we have isolated an active protease gene (M1-2; 613 amino acids) which resided in a 38.4 kb fosmid clone that showed a classical protease-positive phenotype. It was classified as a zinc-dependent metalloprotease, with the closest annotated sequence as a neutral protease from Collimonas fungivorans (62 % similarity and 72 % homology). Further characterisation showed that its optimum temperature and pH were 42 °C and 8.0, respectively. Activity was inhibited by EDTA, but inhibition started to be reversed by excess Zn²⁺. A putative signal peptide was identified bioinformatically and this may be why this protease was successfully isolated using a functional metagenomic screen. Bioinformatic analysis shows that this does not represent a novel protease, but simply expands the current sequence space of known proteases. |
---|---|
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-014-0677-6 |