Loading…

Atmospheric dry deposition flux of metallic species to the North Sea

Air sampling on a series of 10 research cruises on the North Sea (south of 56°N) has yielded detailed spatial distributions of atmospheric metal concentrations, Al, Ca, Cd, Cu, Fe, Mg, Na, Pb and Zn which closely parallel the results of earlier published models. Air mass back trajectory analysis dem...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric environment 1993, Vol.27 (5), p.685-695
Main Authors: Ottley, C.J., Harrison, Roy M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air sampling on a series of 10 research cruises on the North Sea (south of 56°N) has yielded detailed spatial distributions of atmospheric metal concentrations, Al, Ca, Cd, Cu, Fe, Mg, Na, Pb and Zn which closely parallel the results of earlier published models. Air mass back trajectory analysis demonstrates the strong influence which source region may have upon the elemental composition of the North Sea atmosphere. A cascade impactor designed to collect efficiently large as well as small aerosol has produced detailed size distributions from which mass weighted deposition velocity estimates have been produced (Al, 0.33; Cd, 0.24; Cu, 0.44; Fe, 0.30; Pb, 0.13; Zn, 0.30 cm s −1) enabling estimates for the dry deposition flux to the study area to be made. Extrapolation of these data to the whole of the North Sea yields dry deposition flux estimates (Cd, 33; Cu, 350; Pb, 370; Zn, 2640 tonnes yr −1) which are in some instances substantially lower than those previously reported, but nevertheless represent a significant pathway for metallic species to enter this marine environment. The size distributions show the clear dominance that large aerosol has upon the overall dry deposition flux. Flux estimates are thus highly sensitive to the sampling of this large aerosol component, and to assumptions made regarding the sea surface as a source of giant trace metal-enriched particles which act only as a means of recycling marine metals.
ISSN:0960-1686
0004-6981
DOI:10.1016/0960-1686(93)90187-4