Loading…
Oleuropein Suppresses LPS-Induced Inflammatory Responses in RAW 264.7 Cell and Zebrafish
Oleuropein is one of the primary phenolic compounds present in olive leaf. In this study, the anti-inflammatory effect of oleuropein was investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 and a zebrafish model. The inhibitory effect of oleuropein on LPS-induced NO production in macroph...
Saved in:
Published in: | Journal of agricultural and food chemistry 2015-02, Vol.63 (7), p.2098-2105 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oleuropein is one of the primary phenolic compounds present in olive leaf. In this study, the anti-inflammatory effect of oleuropein was investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 and a zebrafish model. The inhibitory effect of oleuropein on LPS-induced NO production in macrophages was supported by the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, our enzyme immunoassay showed that oleuropein suppressed the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6). Oleuropein inhibited the translocation of p65 by suppressing phosphorylation of inhibitory kappa B-α (IκB-α). Oleuropein also decreased activation of ERK1/2 and JNK, which are associated with LPS-induced inflammation, and its downstream gene of AP-1. Furthermore, oleuropein inhibited LPS-stimulated NO generation in a zebrafish model. Taken together, our results demonstrated that oleuropein could reduce inflammatory responses by inhibiting TLR and MAPK signaling, and may be used as an anti-inflammatory agent. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf505894b |