Loading…
Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5
This paper investigates the influence of the tropical Atlantic on the tropical Pacific interannual variability and mean state in the twentieth century. It is demonstrated that observational datasets show a significant time-delayed impact of the tropical Atlantic on tropical Pacific sea surface tempe...
Saved in:
Published in: | Climate dynamics 2015-02, Vol.44 (3-4), p.881-896 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the influence of the tropical Atlantic on the tropical Pacific interannual variability and mean state in the twentieth century. It is demonstrated that observational datasets show a significant time-delayed impact of the tropical Atlantic on tropical Pacific sea surface temperatures, leading to an anticorrelation between the tropical Atlantic and the eastern Pacific if the Atlantic is leading by about 10 months. This result is robust across different sea surface temperature reconstructions. There is no robust correlation between the tropical Atlantic and the eastern Pacific when the Pacific is leading, although in recent decades a positive correlation between the two basins is more dominant. An analysis of the surface pressure response to the tropical Atlantic indicates an atmospheric bridge and a modification of the Walker circulation as the likely trigger for the teleconnection, and this result is consistent with recent observational and modelling results for the recent decades. 30 out of the analyzed 45 World Climate Research Program’s Coupled Model Intercomparison Project Phase 5 (CMIP5) models show statistically significant anticorrelations between individual tropical Atantic warm and cold events and the time-lagged eastern Pacific sea surface temperatues. 16 out of the 45 analyzed models fulfill the more stringent criterion of lead–lag correlations between the tropical Atlantic and Pacific similar to the observations. The atmospheric bridge mechanism seems also valid in the selected CMIP5 models. We have identified the tropical Atlantic warm bias present in nearly all models as one potential candidate for the overall weak time-delayed teleconnection between the tropical Atlantic and the Pacific, but also other mean state biases are important. In the selected models a stronger warming of the tropical Atlantic Ocean compared to the global sea surface temperature mean is associated with a La Nina-like mean state change in the tropical Pacific. However, the ensemble mean of these models still shows a weakly El Nino-like trend, which is associated with a relatively weak Atlantic warming compared to the global mean and the observations. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/s00382-014-2228-z |