Loading…

Filamentous structures in skeletal muscle: anchors for the subsarcolemmal space

In skeletal muscle fibers, intermediate filaments and actin filaments provide structural support to the myofibrils and the sarcolemma. For many years, it was poorly understood from ultrastructural observations that how these filamentous structures were kept anchored. The present study was conducted...

Full description

Saved in:
Bibliographic Details
Published in:Medical molecular morphology 2015-03, Vol.48 (1), p.1-12
Main Authors: Khairani, Astrid Feinisa, Tajika, Yuki, Takahashi, Maiko, Ueno, Hitoshi, Murakami, Tohru, Soenggono, Arifin, Yorifuji, Hiroshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In skeletal muscle fibers, intermediate filaments and actin filaments provide structural support to the myofibrils and the sarcolemma. For many years, it was poorly understood from ultrastructural observations that how these filamentous structures were kept anchored. The present study was conducted to determine the architecture of filamentous anchoring structures in the subsarcolemmal space and the intermyofibrils. The diaphragms (Dp) of adult wild type and mdx mice ( mdx is a model for Duchenne muscular dystrophy) were subjected to tension applied perpendicular to the long axis of the muscle fibers, with or without treatment with 1 % Triton X-100 or 0.03 % saponin. These experiments were conducted to confirm the presence and integrity of the filamentous anchoring structures. Transmission electron microscopy revealed that these structures provide firm transverse connections between the sarcolemma and peripheral myofibrils. Most of the filamentous structures appeared to be inserted into subsarcolemmal densities, forming anchoring connections between the sarcolemma and peripheral myofibrils. In some cases, actin filaments were found to run longitudinally in the subsarcolemmal space to connect to the sarcolemma or in some cases to connect to the intermyofibrils as elongated thin filaments. These filamentous anchoring structures were less common in the mdx Dp. Our data suggest that the transverse and longitudinal filamentous structures form an anchoring system in the subsarcolemmal space and the intermyofibrils.
ISSN:1860-1480
1860-1499
DOI:10.1007/s00795-014-0070-3