Loading…
Distinct neuropsychological profiles within ADHD: a latent class analysis of cognitive control, reward sensitivity and timing
Multiple pathway models of attention deficit hyperactivity disorder (ADHD) suggest that this disorder is the behavioural expression of dysfunction in one of several separable brain systems. One such model focuses on the brain systems underlying cognitive control, timing and reward sensitivity. It pr...
Saved in:
Published in: | Psychological medicine 2015-03, Vol.45 (4), p.735-745 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiple pathway models of attention deficit hyperactivity disorder (ADHD) suggest that this disorder is the behavioural expression of dysfunction in one of several separable brain systems. One such model focuses on the brain systems underlying cognitive control, timing and reward sensitivity. It predicts separable subgroups among individuals with ADHD, with performance deficits in only one of these domains. We used latent class analysis (LCA) to identify subgroups of individuals with ADHD based on their overall pattern of neuropsychological performance, rather than grouping them based on cut-off criteria. We hypothesized that we would find separable subgroups with deficits in cognitive control, timing and reward sensitivity respectively.
Ninety-six subjects with ADHD (of any subtype) and 121 typically developing controls performed a battery assessing cognitive control, timing and reward sensitivity. LCA was used to identify subgroups of individuals with ADHD with a distinct neuropsychological profile. A similar analysis was performed for controls.
Three subgroups represented 87% of subjects with ADHD. Two of our three hypothesized subgroups were identified, with poor cognitive control and timing. Two of the ADHD subgroups had similar profiles to control subgroups, whereas one subgroup had no equivalent in controls.
Our findings support multiple pathway models of ADHD, as we were able to define separable subgroups with differing cognitive profiles. Furthermore, we found both quantitative and qualitative differences from controls, suggesting that ADHD may represent both categorical and dimensional differences. These results show that by addressing heterogeneity in ADHD, we can identify more homogeneous subsets of individuals to further investigate. |
---|---|
ISSN: | 0033-2917 1469-8978 |
DOI: | 10.1017/S0033291714001792 |