Loading…

Disparate Connectivity for Structural and Functional Networks is Revealed When Physical Location of the Connected Nodes is Considered

Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering th...

Full description

Saved in:
Bibliographic Details
Published in:Brain topography 2015-03, Vol.28 (2), p.187-196
Main Authors: Pineda-Pardo, José Ángel, Martínez, Kenia, Solana, Ana Beatriz, Hernández-Tamames, Juan Antonio, Colom, Roberto, Pozo, Francisco del
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-d4103b6e34644ec18b2df83678fdc73dd7e013a43af36aac85885db072f0baa3
cites cdi_FETCH-LOGICAL-c405t-d4103b6e34644ec18b2df83678fdc73dd7e013a43af36aac85885db072f0baa3
container_end_page 196
container_issue 2
container_start_page 187
container_title Brain topography
container_volume 28
creator Pineda-Pardo, José Ángel
Martínez, Kenia
Solana, Ana Beatriz
Hernández-Tamames, Juan Antonio
Colom, Roberto
Pozo, Francisco del
description Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical connections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 different brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very-large-scale integration circuits analyses, shows that functional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrangements for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal–ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organizations that can only be identified when the physical locations of the nodes are included in the analysis.
doi_str_mv 10.1007/s10548-014-0393-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664207898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1656045804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d4103b6e34644ec18b2df83678fdc73dd7e013a43af36aac85885db072f0baa3</originalsourceid><addsrcrecordid>eNqN0d9qFDEUBvAgFrtWH8AbCXjjzdiTyd-5lK1VYWlFC16GTHLGnTo7WZOZyj6A72222xYRBK9Ckt_5AvkIecHgDQPQp5mBFKYCJirgDa_4I7JgUvNK6aZ-TBZgGlVBrfQxeZrzNUBRWj8hx7VkjeCcLcivsz5vXXIT0mUcR_RTf9NPO9rFRL9MafbTnNxA3Rjo-TyW2ziW7QVOP2P6nmmf6We8QTdgoF_XONJP613ufSGr6N1e09jRaf2QXtxFDHg7WY5yHzBheEaOOjdkfH63npCr83dXyw_V6vL9x-XbVeUFyKkKggFvFXKhhEDPTFuHznClTRe85iFoBMad4K7jyjlvpDEytKDrDlrn-Al5fYjdpvhjxjzZTZ89DoMbMc7ZMqVEDdo05j-oVCCkAVHoq7_odZxT-aZbJQvihhXFDsqnmHPCzm5Tv3FpZxnYfZv20KYtbdp9m5aXmZd3yXO7wfAwcV9fAfUB5HI1fsP0x9P_TP0NxtGrGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655458381</pqid></control><display><type>article</type><title>Disparate Connectivity for Structural and Functional Networks is Revealed When Physical Location of the Connected Nodes is Considered</title><source>Springer Link</source><creator>Pineda-Pardo, José Ángel ; Martínez, Kenia ; Solana, Ana Beatriz ; Hernández-Tamames, Juan Antonio ; Colom, Roberto ; Pozo, Francisco del</creator><creatorcontrib>Pineda-Pardo, José Ángel ; Martínez, Kenia ; Solana, Ana Beatriz ; Hernández-Tamames, Juan Antonio ; Colom, Roberto ; Pozo, Francisco del</creatorcontrib><description>Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical connections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 different brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very-large-scale integration circuits analyses, shows that functional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrangements for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal–ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organizations that can only be identified when the physical locations of the nodes are included in the analysis.</description><identifier>ISSN: 0896-0267</identifier><identifier>EISSN: 1573-6792</identifier><identifier>DOI: 10.1007/s10548-014-0393-3</identifier><identifier>PMID: 25194331</identifier><identifier>CODEN: BRTOEZ</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adolescent ; Biomedical and Life Sciences ; Biomedicine ; Brain - anatomy &amp; histology ; Brain - physiology ; Brain Mapping ; Diffusion Magnetic Resonance Imaging ; Diffusion Tensor Imaging ; Female ; Humans ; Neural Pathways - anatomy &amp; histology ; Neural Pathways - physiology ; Neurology ; Neurosciences ; Original Paper ; Psychiatry ; Rest ; Signal Processing, Computer-Assisted ; Young Adult</subject><ispartof>Brain topography, 2015-03, Vol.28 (2), p.187-196</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d4103b6e34644ec18b2df83678fdc73dd7e013a43af36aac85885db072f0baa3</citedby><cites>FETCH-LOGICAL-c405t-d4103b6e34644ec18b2df83678fdc73dd7e013a43af36aac85885db072f0baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25194331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pineda-Pardo, José Ángel</creatorcontrib><creatorcontrib>Martínez, Kenia</creatorcontrib><creatorcontrib>Solana, Ana Beatriz</creatorcontrib><creatorcontrib>Hernández-Tamames, Juan Antonio</creatorcontrib><creatorcontrib>Colom, Roberto</creatorcontrib><creatorcontrib>Pozo, Francisco del</creatorcontrib><title>Disparate Connectivity for Structural and Functional Networks is Revealed When Physical Location of the Connected Nodes is Considered</title><title>Brain topography</title><addtitle>Brain Topogr</addtitle><addtitle>Brain Topogr</addtitle><description>Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical connections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 different brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very-large-scale integration circuits analyses, shows that functional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrangements for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal–ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organizations that can only be identified when the physical locations of the nodes are included in the analysis.</description><subject>Adolescent</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion Tensor Imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Neural Pathways - anatomy &amp; histology</subject><subject>Neural Pathways - physiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Psychiatry</subject><subject>Rest</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Young Adult</subject><issn>0896-0267</issn><issn>1573-6792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0d9qFDEUBvAgFrtWH8AbCXjjzdiTyd-5lK1VYWlFC16GTHLGnTo7WZOZyj6A72222xYRBK9Ckt_5AvkIecHgDQPQp5mBFKYCJirgDa_4I7JgUvNK6aZ-TBZgGlVBrfQxeZrzNUBRWj8hx7VkjeCcLcivsz5vXXIT0mUcR_RTf9NPO9rFRL9MafbTnNxA3Rjo-TyW2ziW7QVOP2P6nmmf6We8QTdgoF_XONJP613ufSGr6N1e09jRaf2QXtxFDHg7WY5yHzBheEaOOjdkfH63npCr83dXyw_V6vL9x-XbVeUFyKkKggFvFXKhhEDPTFuHznClTRe85iFoBMad4K7jyjlvpDEytKDrDlrn-Al5fYjdpvhjxjzZTZ89DoMbMc7ZMqVEDdo05j-oVCCkAVHoq7_odZxT-aZbJQvihhXFDsqnmHPCzm5Tv3FpZxnYfZv20KYtbdp9m5aXmZd3yXO7wfAwcV9fAfUB5HI1fsP0x9P_TP0NxtGrGQ</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Pineda-Pardo, José Ángel</creator><creator>Martínez, Kenia</creator><creator>Solana, Ana Beatriz</creator><creator>Hernández-Tamames, Juan Antonio</creator><creator>Colom, Roberto</creator><creator>Pozo, Francisco del</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150301</creationdate><title>Disparate Connectivity for Structural and Functional Networks is Revealed When Physical Location of the Connected Nodes is Considered</title><author>Pineda-Pardo, José Ángel ; Martínez, Kenia ; Solana, Ana Beatriz ; Hernández-Tamames, Juan Antonio ; Colom, Roberto ; Pozo, Francisco del</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d4103b6e34644ec18b2df83678fdc73dd7e013a43af36aac85885db072f0baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion Tensor Imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Neural Pathways - anatomy &amp; histology</topic><topic>Neural Pathways - physiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Psychiatry</topic><topic>Rest</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pineda-Pardo, José Ángel</creatorcontrib><creatorcontrib>Martínez, Kenia</creatorcontrib><creatorcontrib>Solana, Ana Beatriz</creatorcontrib><creatorcontrib>Hernández-Tamames, Juan Antonio</creatorcontrib><creatorcontrib>Colom, Roberto</creatorcontrib><creatorcontrib>Pozo, Francisco del</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain topography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pineda-Pardo, José Ángel</au><au>Martínez, Kenia</au><au>Solana, Ana Beatriz</au><au>Hernández-Tamames, Juan Antonio</au><au>Colom, Roberto</au><au>Pozo, Francisco del</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disparate Connectivity for Structural and Functional Networks is Revealed When Physical Location of the Connected Nodes is Considered</atitle><jtitle>Brain topography</jtitle><stitle>Brain Topogr</stitle><addtitle>Brain Topogr</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>28</volume><issue>2</issue><spage>187</spage><epage>196</epage><pages>187-196</pages><issn>0896-0267</issn><eissn>1573-6792</eissn><coden>BRTOEZ</coden><abstract>Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical connections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 different brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very-large-scale integration circuits analyses, shows that functional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrangements for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal–ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organizations that can only be identified when the physical locations of the nodes are included in the analysis.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>25194331</pmid><doi>10.1007/s10548-014-0393-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0896-0267
ispartof Brain topography, 2015-03, Vol.28 (2), p.187-196
issn 0896-0267
1573-6792
language eng
recordid cdi_proquest_miscellaneous_1664207898
source Springer Link
subjects Adolescent
Biomedical and Life Sciences
Biomedicine
Brain - anatomy & histology
Brain - physiology
Brain Mapping
Diffusion Magnetic Resonance Imaging
Diffusion Tensor Imaging
Female
Humans
Neural Pathways - anatomy & histology
Neural Pathways - physiology
Neurology
Neurosciences
Original Paper
Psychiatry
Rest
Signal Processing, Computer-Assisted
Young Adult
title Disparate Connectivity for Structural and Functional Networks is Revealed When Physical Location of the Connected Nodes is Considered
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disparate%20Connectivity%20for%20Structural%20and%20Functional%20Networks%20is%20Revealed%20When%20Physical%20Location%20of%20the%20Connected%20Nodes%20is%20Considered&rft.jtitle=Brain%20topography&rft.au=Pineda-Pardo,%20Jos%C3%A9%20%C3%81ngel&rft.date=2015-03-01&rft.volume=28&rft.issue=2&rft.spage=187&rft.epage=196&rft.pages=187-196&rft.issn=0896-0267&rft.eissn=1573-6792&rft.coden=BRTOEZ&rft_id=info:doi/10.1007/s10548-014-0393-3&rft_dat=%3Cproquest_cross%3E1656045804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-d4103b6e34644ec18b2df83678fdc73dd7e013a43af36aac85885db072f0baa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1655458381&rft_id=info:pmid/25194331&rfr_iscdi=true