Loading…

ROS generated during early reperfusion contribute to intermittent hypobaric hypoxia-afforded cardioprotection against postischemia-induced Ca(2+) overload and contractile dysfunction via the JAK2/STAT3 pathway

Moderate enhanced reactive oxygen species (ROS) during early reperfusion trigger the cardioprotection against ischemia/reperfusion (I/R) injury, while the mechanism is largely unknown. Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) contributes to the cardioprotectio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular and cellular cardiology 2015-04, Vol.81, p.150-161
Main Authors: Wu, Lan, Tan, Ji-Liang, Wang, Zhi-Hua, Chen, Yi-Xiong, Gao, Ling, Liu, Jin-Long, Shi, Yun-Hua, Endoh, Masao, Yang, Huang-Tian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Moderate enhanced reactive oxygen species (ROS) during early reperfusion trigger the cardioprotection against ischemia/reperfusion (I/R) injury, while the mechanism is largely unknown. Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) contributes to the cardioprotection but whether it is activated by ROS and how it regulates Ca(2+) homeostasis remain unclear. Here we investigated whether the ROS generated during early reperfusion protect the heart/cardiomyocyte against I/R-induced Ca(2+) overload and contractile dysfunction via the activation of JAK2/STAT3 signaling pathway by using a cardioprotective model of intermittent hypobaric hypoxia (IHH) preconditioning. IHH improved the postischemic recovery of myocardial contractile performance in isolated rat I/R hearts as well as Ca(2+) homeostasis and cell contraction in simulated I/R cardiomyocytes. Meanwhile, IHH enhanced I/R-increased STAT3 phosphorylation at tyrosine 705 in the nucleus and reversed I/R-suppressed STAT3 phosphorylation at serine 727 in the nucleus and mitochondria during reperfusion. Moreover, IHH improved I/R-suppressed sarcoplasmic reticulum (SR) Ca(2+)-ATPase 2 (SERCA2) activity, enhanced I/R-increased Bcl-2 expression, and promoted the co-localization and interaction of Bcl-2 with SERCA2 during reperfusion. These effects were abolished by scavenging ROS with N-(2-mercaptopropionyl)-glycine (2-MPG) and/or by inhibiting JAK2 with AG490 during the early reperfusion. Furthermore, IHH-improved postischemic SERCA2 activity and Ca(2+) homeostasis as well as cell contraction were reversed after Bcl-2 knockdown by short hairpin RNA. In addition, the reversal of the I/R-suppressed mitochondrial membrane potential by IHH was abolished by 2-MPG and AG490. These results indicate that during early reperfusion the ROS/JAK2/STAT3 pathways play a crucial role in (i) the IHH-maintained intracellular Ca(2+) homeostasis via the improvement of postischemic SERCA2 activity through the increase of SR Bcl-2 and its interaction with SERCA2; and (ii) the IHH-improved mitochondrial function.
ISSN:1095-8584
DOI:10.1016/j.yjmcc.2015.02.015