Loading…

The self assembly of proteins; probing patchy protein interactions

The ability to control the self-assembly of biological molecules to form defined structures, with a high degree of predictability is a central aim for soft matter science and synthetic biology. Several examples of this are known for synthetic systems, such as anisotropic colloids. However, for bioma...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2015-01, Vol.17 (7), p.5413-5420
Main Authors: James, Susan, Quinn, Michelle K, McManus, Jennifer J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to control the self-assembly of biological molecules to form defined structures, with a high degree of predictability is a central aim for soft matter science and synthetic biology. Several examples of this are known for synthetic systems, such as anisotropic colloids. However, for biomacromolecules, such as proteins, success has been more limited, since aeolotopic (or anisotropic) interactions between protein molecules are not easily predicted. We have created three double mutants of human γD-crystallin for which the phase diagrams for singly mutated proteins can be used to predict the behavior of the double mutants. These proteins provide a robust mechanism to examine the kinetic and thermodynamic properties of proteins in which competing interactions exist due to the anisotropic or patchy nature of the protein surface.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp05892e