Loading…
Adaptive Wavelets for Characterizing Magnetic Flux Leakage Signals From Pipeline Inspection
Natural gas transmission pipelines are commonly inspected using magnetic flux leakage (MFL) method for detecting cracks and corrosion in the pipewall. Traditionally the MFL data obtained is processed to estimate an equivalent length (L), width (W), and depth (D) of defects. This information is then...
Saved in:
Published in: | IEEE transactions on magnetics 2006-10, Vol.42 (10), p.3168-3170 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural gas transmission pipelines are commonly inspected using magnetic flux leakage (MFL) method for detecting cracks and corrosion in the pipewall. Traditionally the MFL data obtained is processed to estimate an equivalent length (L), width (W), and depth (D) of defects. This information is then used to predict the maximum safe operating pressure (MAOP). In order to obtain a more accurate estimate for the MAOP, it is necessary to invert the MFL signal in terms of the full three-dimensional (3-D) depth profile of defects. This paper proposes a novel iterative method of inversion using adaptive wavelets and radial basis function neural network (RBFNN) that can efficiently reduce the data dimensionality and predict the full 3-D depth profile. Initials results obtained using simulated data are presented |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2006.880091 |