Loading…
Integrality gap of the hypergraphic relaxation of Steiner trees: A short proof of a 1.55 upper bound
Recently, Byrka, Grandoni, Rothvoß and Sanità gave a 1.39 approximation for the Steiner tree problem, using a hypergraph-based linear programming relaxation. They also upper-bounded its integrality gap by 1.55. We describe a shorter proof of the same integrality gap bound, by applying some of their...
Saved in:
Published in: | Operations research letters 2010-11, Vol.38 (6), p.567-570 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, Byrka, Grandoni, Rothvoß and Sanità gave a 1.39 approximation for the Steiner tree problem, using a hypergraph-based linear programming relaxation. They also upper-bounded its integrality gap by 1.55. We describe a shorter proof of the same integrality gap bound, by applying some of their techniques to a randomized loss-contracting algorithm. |
---|---|
ISSN: | 0167-6377 1872-7468 |
DOI: | 10.1016/j.orl.2010.09.004 |