Loading…

Real-time implementation of IRFOC for Single-Phase Induction Motor drive using dSpace DS 1104 control board

Single Phase induction Motors (SPIMs) are one of the widely used motors in the world. This explains the interest accorded by researchers on the improvement of the quality and performances of these motors. The availability of low-cost static converters makes possible the economic use of energy and im...

Full description

Saved in:
Bibliographic Details
Published in:Simulation modelling practice and theory 2009-07, Vol.17 (6), p.1071-1080
Main Authors: Jemli, Mohamed, Ben Azza, Hechmi, Gossa, Moncef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single Phase induction Motors (SPIMs) are one of the widely used motors in the world. This explains the interest accorded by researchers on the improvement of the quality and performances of these motors. The availability of low-cost static converters makes possible the economic use of energy and improvement of the quality of the electromagnetic torque in the SPIM. Nowadays, Indirect Rotor-Field-Oriented Control (IRFOC) techniques brought on a renaissance in modern high-performance control of PWM inverter fed SPIM. In this paper, an IRFOC system is proposed for SPIMs including a relatively simple and effective decoupling scheme. This is achieved by introducing two new decoupling signals to the system. However, model asymmetry in SPIMs causes extra coupling between two stator windings. To use the field orientation control, the asymmetry must be eliminated by using an appropriate variable changing. A computer simulation of the IRFOC for Single-Phase Induction Motor drive is carried out to test the validity of the proposed method at nominal and zero speed. The design, analysis, and implementation for a 1.1-kW Single-Phase Induction Motor are completely carried out using a dSPACE DS1104 digital signal processor (DSP) based real-time data acquisition control (DAC) system, and MATLAB/Simulink environment. Digital simulation and experimental results are presented to show the improvement in performance of the proposed algorithm.
ISSN:1569-190X
1878-1462
DOI:10.1016/j.simpat.2009.03.005