Loading…
Flows in 3-edge-connected bidirected graphs
It was conjectured by A. Bouchet that every bidirected graph which admits a nowhere-zero k-flow admits a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. O. Zyka improved the result with 6 replaced by 30. R. Xu and C. Q. Zhang showed that the conjecture is true f...
Saved in:
Published in: | Frontiers of mathematics in China 2011-04, Vol.6 (2), p.339-348 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It was conjectured by A. Bouchet that every bidirected graph which admits a nowhere-zero k-flow admits a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. O. Zyka improved the result with 6 replaced by 30. R. Xu and C. Q. Zhang showed that the conjecture is true for 6-edge-connected graph, which is further improved by A. Raspaud and X. Zhu for 4-edge-connected graphs. The main result of this paper improves Zyka's theorem by showing the existence of a nowhere-zero 25-flow for all 3-edge-connected graphs. |
---|---|
ISSN: | 1673-3452 1673-3576 |
DOI: | 10.1007/s11464-011-0111-3 |