Loading…

Alliance Free and Alliance Cover Sets

A defensive (offensive) k-alliance in F = (V, E) is a set S C V such that every v in S (in the boundary of S) has at least k more neighbors in S than it has in V / S. A set X C_ V is defensive (offensive) k-alliance free, if for all defensive (offensive) k-alliance S, S/ X ≠ 0, i.e., X does not cont...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2011-03, Vol.27 (3), p.497-504
Main Authors: Rodriguez-Velazquez, Juan Alberto, Sigarreta, José María, Gonzalez Yero, Ismael, Bermudo, Sergio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A defensive (offensive) k-alliance in F = (V, E) is a set S C V such that every v in S (in the boundary of S) has at least k more neighbors in S than it has in V / S. A set X C_ V is defensive (offensive) k-alliance free, if for all defensive (offensive) k-alliance S, S/ X ≠ 0, i.e., X does not contain any defensive (offensive) k-alliance as a subset. A set Y C V is a defensive (offensive) k-alliance cover, if for all defensive (offensive) k-alliance S, S ∩ Y ≠ 0, i.e., Y contains at least one vertex from each defensive (offensive) k-alliance of F. In this paper we show several mathematical properties of defensive (offensive) k-alliance free sets and defensive (offensive) k-alliance cover sets, including tight bounds on their cardinality.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-011-0056-1