Loading…

Reduction of semiconductor process emissions by reactive gas optimization

Tailoring the chemical environment in plasmas by addition of reactive gases to affect byproduct formation has been demonstrated to reduce perfluorocompound (PFC) emissions. Perfluorocompound emissions from dielectric etch processes are reduced by oxygen addition, which reduces polymerization and inc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on semiconductor manufacturing 2004-11, Vol.17 (4), p.483-490
Main Authors: Vartanian, V., Goolsby, B., Chatterjee, R., Kachmarik, R., Babbitt, D., Reif, R., Tonnis, E.J., Graves, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tailoring the chemical environment in plasmas by addition of reactive gases to affect byproduct formation has been demonstrated to reduce perfluorocompound (PFC) emissions. Perfluorocompound emissions from dielectric etch processes are reduced by oxygen addition, which reduces polymerization and increases etch rates, primarily by affecting the fluorine or carbon in the plasma, and secondarily, by affecting resist erosion. Oxygen or water vapor introduced upstream of plasma abatement devices reduces PFC reformation by preferentially combining with carbon and fluorine-containing radicals to form thermodynamically favorable byproducts that are non- or low-global warming. Introducing oxygen to low-k chemical vapor deposition (CVD) chamber clean processes also reduces PFC emissions, primarily by reducing CF/sub 4/ by forming thermodynamically stable CO and CO/sub 2/. Analogously, adjusting the fuel or the oxidizer flow in fuel-fired abatement devices provides a higher flame temperature where thermal cracking of higher molecular weight low-k CVD organosilicon precursors can more readily occur, allowing the carbon-rich precursors to more completely oxidize.
ISSN:0894-6507
1558-2345
DOI:10.1109/TSM.2004.837004