Loading…
An efficient numerical solution for linear stability of circular jet: A combination of Petrov-Galerkin spectral method and exponential coordinate transformation based on Fornberg's treatment
This paper presents the linear stability analysis of a round jet in a radially unbounded domain using a spectral Petrov–Galerkin scheme coped with exponential coordinate transformation based on Fornberg's treatment. A Fourier–Chebyshev Petrov–Galerkin spectral method is described for the comput...
Saved in:
Published in: | International journal for numerical methods in fluids 2009-11, Vol.61 (7), p.780-795 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the linear stability analysis of a round jet in a radially unbounded domain using a spectral Petrov–Galerkin scheme coped with exponential coordinate transformation based on Fornberg's treatment. A Fourier–Chebyshev Petrov–Galerkin spectral method is described for the computation of the linear stability equations based on half a Gauss–Lobatto mesh. Complex basis functions presented here are exponentially mapped as Chebyshev functions, which satisfy the pole condition exactly at the origin, and can be used to expand vector functions efficiently by using the solenoidal condition. The mathematical formulation is presented in detail focusing on the solenoidal vector field used for the approximation of the flow. The scheme provides spectral accuracy in the present cases and the numerical results are in agreement with former works. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0271-2091 1097-0363 1097-0363 |
DOI: | 10.1002/fld.1975 |