Loading…

A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA

We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2010-01, Vol.48 (4), p.1281-1312
Main Authors: INGRAM, ROSS, WHEELER, MARY F., YOTOV, IVAN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.
ISSN:0036-1429
1095-7170
DOI:10.1137/090766176