Loading…
A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA
We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The...
Saved in:
Published in: | SIAM journal on numerical analysis 2010-01, Vol.48 (4), p.1281-1312 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3 |
container_end_page | 1312 |
container_issue | 4 |
container_start_page | 1281 |
container_title | SIAM journal on numerical analysis |
container_volume | 48 |
creator | INGRAM, ROSS WHEELER, MARY F. YOTOV, IVAN |
description | We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally. |
doi_str_mv | 10.1137/090766176 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671352807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41149003</jstor_id><sourcerecordid>41149003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFYP_gAheNJDdCe72Q9vod2aQNKIpNBbWDcbaGkb3W0P_ntXKj14Gt6Zh5fhQegW8BMA4c9YYs4YcHaGRoBlGnPg-ByNMCYsBprIS3Tl_RqHLICM0EsWVYuyKd7qYt5Es3KxjKpiqabRrJgXjYpUqSoVLpVq8noa1fMoV8ssV9P37Bpd9Hrj7c3fHKPFTDWTPC7r12KSlbEhAPtYpKQznPVUGM11ksguJZJzTcUHszok2wtBMScmgbAzvCN9ZztCTac5lR0Zo4dj76cbvg7W79vtyhu72eidHQ6-BcaBpIkIFWN0_w9dDwe3C9-1gktOA8oC9HiEjBu8d7ZvP91qq913C7j9ldieJAb27siu_X5wJ5ACUBkUkh9BBWW6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879741676</pqid></control><display><type>article</type><title>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</title><source>SIAM Journals Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><creator>INGRAM, ROSS ; WHEELER, MARY F. ; YOTOV, IVAN</creator><creatorcontrib>INGRAM, ROSS ; WHEELER, MARY F. ; YOTOV, IVAN</creatorcontrib><description>We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/090766176</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Coefficients ; Convergence ; Degrees of freedom ; Error analysis ; Error rates ; Finite element analysis ; Finite element method ; Flux ; Fluxes ; Mathematical analysis ; Mathematical vectors ; Numerical analysis ; Parallelepipeds ; Quadratures ; Statistical analysis ; Studies ; Tensors ; Vertices</subject><ispartof>SIAM journal on numerical analysis, 2010-01, Vol.48 (4), p.1281-1312</ispartof><rights>Copyright ©2011 Society for Industrial and Applied Mathematics</rights><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</citedby><cites>FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41149003$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/879741676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3172,11669,27905,27906,36041,36042,44344,58219,58452</link.rule.ids></links><search><creatorcontrib>INGRAM, ROSS</creatorcontrib><creatorcontrib>WHEELER, MARY F.</creatorcontrib><creatorcontrib>YOTOV, IVAN</creatorcontrib><title>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</title><title>SIAM journal on numerical analysis</title><description>We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Convergence</subject><subject>Degrees of freedom</subject><subject>Error analysis</subject><subject>Error rates</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flux</subject><subject>Fluxes</subject><subject>Mathematical analysis</subject><subject>Mathematical vectors</subject><subject>Numerical analysis</subject><subject>Parallelepipeds</subject><subject>Quadratures</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Tensors</subject><subject>Vertices</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkE1Lw0AQhhdRsFYP_gAheNJDdCe72Q9vod2aQNKIpNBbWDcbaGkb3W0P_ntXKj14Gt6Zh5fhQegW8BMA4c9YYs4YcHaGRoBlGnPg-ByNMCYsBprIS3Tl_RqHLICM0EsWVYuyKd7qYt5Es3KxjKpiqabRrJgXjYpUqSoVLpVq8noa1fMoV8ssV9P37Bpd9Hrj7c3fHKPFTDWTPC7r12KSlbEhAPtYpKQznPVUGM11ksguJZJzTcUHszok2wtBMScmgbAzvCN9ZztCTac5lR0Zo4dj76cbvg7W79vtyhu72eidHQ6-BcaBpIkIFWN0_w9dDwe3C9-1gktOA8oC9HiEjBu8d7ZvP91qq913C7j9ldieJAb27siu_X5wJ5ACUBkUkh9BBWW6</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>INGRAM, ROSS</creator><creator>WHEELER, MARY F.</creator><creator>YOTOV, IVAN</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</title><author>INGRAM, ROSS ; WHEELER, MARY F. ; YOTOV, IVAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Convergence</topic><topic>Degrees of freedom</topic><topic>Error analysis</topic><topic>Error rates</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flux</topic><topic>Fluxes</topic><topic>Mathematical analysis</topic><topic>Mathematical vectors</topic><topic>Numerical analysis</topic><topic>Parallelepipeds</topic><topic>Quadratures</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Tensors</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>INGRAM, ROSS</creatorcontrib><creatorcontrib>WHEELER, MARY F.</creatorcontrib><creatorcontrib>YOTOV, IVAN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>INGRAM, ROSS</au><au>WHEELER, MARY F.</au><au>YOTOV, IVAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>48</volume><issue>4</issue><spage>1281</spage><epage>1312</epage><pages>1281-1312</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090766176</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2010-01, Vol.48 (4), p.1281-1312 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671352807 |
source | SIAM Journals Archive; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global |
subjects | Approximation Coefficients Convergence Degrees of freedom Error analysis Error rates Finite element analysis Finite element method Flux Fluxes Mathematical analysis Mathematical vectors Numerical analysis Parallelepipeds Quadratures Statistical analysis Studies Tensors Vertices |
title | A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20MULTIPOINT%20FLUX%20MIXED%20FINITE%20ELEMENT%20METHOD%20ON%20HEXAHEDRA&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=INGRAM,%20ROSS&rft.date=2010-01-01&rft.volume=48&rft.issue=4&rft.spage=1281&rft.epage=1312&rft.pages=1281-1312&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/090766176&rft_dat=%3Cjstor_proqu%3E41149003%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=879741676&rft_id=info:pmid/&rft_jstor_id=41149003&rfr_iscdi=true |