Loading…

A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA

We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2010-01, Vol.48 (4), p.1281-1312
Main Authors: INGRAM, ROSS, WHEELER, MARY F., YOTOV, IVAN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3
cites cdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3
container_end_page 1312
container_issue 4
container_start_page 1281
container_title SIAM journal on numerical analysis
container_volume 48
creator INGRAM, ROSS
WHEELER, MARY F.
YOTOV, IVAN
description We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.
doi_str_mv 10.1137/090766176
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671352807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41149003</jstor_id><sourcerecordid>41149003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFYP_gAheNJDdCe72Q9vod2aQNKIpNBbWDcbaGkb3W0P_ntXKj14Gt6Zh5fhQegW8BMA4c9YYs4YcHaGRoBlGnPg-ByNMCYsBprIS3Tl_RqHLICM0EsWVYuyKd7qYt5Es3KxjKpiqabRrJgXjYpUqSoVLpVq8noa1fMoV8ssV9P37Bpd9Hrj7c3fHKPFTDWTPC7r12KSlbEhAPtYpKQznPVUGM11ksguJZJzTcUHszok2wtBMScmgbAzvCN9ZztCTac5lR0Zo4dj76cbvg7W79vtyhu72eidHQ6-BcaBpIkIFWN0_w9dDwe3C9-1gktOA8oC9HiEjBu8d7ZvP91qq913C7j9ldieJAb27siu_X5wJ5ACUBkUkh9BBWW6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879741676</pqid></control><display><type>article</type><title>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</title><source>SIAM Journals Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><creator>INGRAM, ROSS ; WHEELER, MARY F. ; YOTOV, IVAN</creator><creatorcontrib>INGRAM, ROSS ; WHEELER, MARY F. ; YOTOV, IVAN</creatorcontrib><description>We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/090766176</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Coefficients ; Convergence ; Degrees of freedom ; Error analysis ; Error rates ; Finite element analysis ; Finite element method ; Flux ; Fluxes ; Mathematical analysis ; Mathematical vectors ; Numerical analysis ; Parallelepipeds ; Quadratures ; Statistical analysis ; Studies ; Tensors ; Vertices</subject><ispartof>SIAM journal on numerical analysis, 2010-01, Vol.48 (4), p.1281-1312</ispartof><rights>Copyright ©2011 Society for Industrial and Applied Mathematics</rights><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</citedby><cites>FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41149003$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/879741676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3172,11669,27905,27906,36041,36042,44344,58219,58452</link.rule.ids></links><search><creatorcontrib>INGRAM, ROSS</creatorcontrib><creatorcontrib>WHEELER, MARY F.</creatorcontrib><creatorcontrib>YOTOV, IVAN</creatorcontrib><title>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</title><title>SIAM journal on numerical analysis</title><description>We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Convergence</subject><subject>Degrees of freedom</subject><subject>Error analysis</subject><subject>Error rates</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flux</subject><subject>Fluxes</subject><subject>Mathematical analysis</subject><subject>Mathematical vectors</subject><subject>Numerical analysis</subject><subject>Parallelepipeds</subject><subject>Quadratures</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Tensors</subject><subject>Vertices</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkE1Lw0AQhhdRsFYP_gAheNJDdCe72Q9vod2aQNKIpNBbWDcbaGkb3W0P_ntXKj14Gt6Zh5fhQegW8BMA4c9YYs4YcHaGRoBlGnPg-ByNMCYsBprIS3Tl_RqHLICM0EsWVYuyKd7qYt5Es3KxjKpiqabRrJgXjYpUqSoVLpVq8noa1fMoV8ssV9P37Bpd9Hrj7c3fHKPFTDWTPC7r12KSlbEhAPtYpKQznPVUGM11ksguJZJzTcUHszok2wtBMScmgbAzvCN9ZztCTac5lR0Zo4dj76cbvg7W79vtyhu72eidHQ6-BcaBpIkIFWN0_w9dDwe3C9-1gktOA8oC9HiEjBu8d7ZvP91qq913C7j9ldieJAb27siu_X5wJ5ACUBkUkh9BBWW6</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>INGRAM, ROSS</creator><creator>WHEELER, MARY F.</creator><creator>YOTOV, IVAN</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</title><author>INGRAM, ROSS ; WHEELER, MARY F. ; YOTOV, IVAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Convergence</topic><topic>Degrees of freedom</topic><topic>Error analysis</topic><topic>Error rates</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flux</topic><topic>Fluxes</topic><topic>Mathematical analysis</topic><topic>Mathematical vectors</topic><topic>Numerical analysis</topic><topic>Parallelepipeds</topic><topic>Quadratures</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Tensors</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>INGRAM, ROSS</creatorcontrib><creatorcontrib>WHEELER, MARY F.</creatorcontrib><creatorcontrib>YOTOV, IVAN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>INGRAM, ROSS</au><au>WHEELER, MARY F.</au><au>YOTOV, IVAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>48</volume><issue>4</issue><spage>1281</spage><epage>1312</epage><pages>1281-1312</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal, 44 (2006), pp. 2082-2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enhancement of the lowest order Brezzi-Douglas-Durán-Fortin (BDDF) mixed finite element spaces on hexahedra. In particular, there are four fluxes per face, one associated with each vertex. A special quadrature rule is employed that allows for local velocity elimination and leads to a symmetric and positive definite cell-centered system for the pressures. Theoretical and numerical results indicate first-order convergence for pressures and subface fluxes on sufficiently regular grids, as well as second-order convergence for pressures at the cell centers. Second-order convergence for face fluxes is also observed computationally.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090766176</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2010-01, Vol.48 (4), p.1281-1312
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1671352807
source SIAM Journals Archive; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global
subjects Approximation
Coefficients
Convergence
Degrees of freedom
Error analysis
Error rates
Finite element analysis
Finite element method
Flux
Fluxes
Mathematical analysis
Mathematical vectors
Numerical analysis
Parallelepipeds
Quadratures
Statistical analysis
Studies
Tensors
Vertices
title A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20MULTIPOINT%20FLUX%20MIXED%20FINITE%20ELEMENT%20METHOD%20ON%20HEXAHEDRA&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=INGRAM,%20ROSS&rft.date=2010-01-01&rft.volume=48&rft.issue=4&rft.spage=1281&rft.epage=1312&rft.pages=1281-1312&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/090766176&rft_dat=%3Cjstor_proqu%3E41149003%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-853dc76f48ca7a229d53977a48b6ea9d5ef884073c2148bc7d3fded34cda749d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=879741676&rft_id=info:pmid/&rft_jstor_id=41149003&rfr_iscdi=true