Loading…

Local solutions for a coupled system of Kirchhoff type

We investigate the existence of local solutions of the following coupled system of Kirchhoff equations subject to nonlinear dissipation on the boundary: ( ∗ ) | u ″ − M 1 ( t , ‖ u ( t ) ‖ 2 , ‖ v ( t ) ‖ 2 ) △ u = 0 in  Ω × ( 0 , ∞ ) , v ″ − M 2 ( t , ‖ u ( t ) ‖ 2 , ‖ v ( t ) ‖ 2 ) △ v = 0 in  Ω ×...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2011-12, Vol.74 (18), p.7094-7110
Main Authors: Lourêdo, A.T., Milla Miranda, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the existence of local solutions of the following coupled system of Kirchhoff equations subject to nonlinear dissipation on the boundary: ( ∗ ) | u ″ − M 1 ( t , ‖ u ( t ) ‖ 2 , ‖ v ( t ) ‖ 2 ) △ u = 0 in  Ω × ( 0 , ∞ ) , v ″ − M 2 ( t , ‖ u ( t ) ‖ 2 , ‖ v ( t ) ‖ 2 ) △ v = 0 in  Ω × ( 0 , ∞ ) , u = 0 , v = 0 on  Γ 0 × ] 0 , ∞ [ , ∂ u ∂ ν + δ 1 h 1 ( u ′ ) = 0 on  Γ 1 × ] 0 , ∞ [ , ∂ u ∂ ν + δ 2 h 2 ( u ′ ) = 0 on  Γ 1 × ] 0 , ∞ [ . Here { Γ 0 , Γ 1 } is an appropriate partition of the boundary Γ of Ω and ν ( x ) , the outer unit normal vector at x ∈ Γ 1 . By applying the Galerkin method with a special basis for the space where lie the approximations of the initial data, we obtain local solutions of the initial-boundary value problem for (∗).
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.07.030