Loading…
A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach
Predicting corporate credit-rating using statistical and artificial intelligence (AI) techniques has received considerable research attention in the literature. In recent years, multi-class support vector machines (MSVMs) have become a very appealing machine-learning approach due to their good perfo...
Saved in:
Published in: | Computers & operations research 2012-08, Vol.39 (8), p.1800-1811 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predicting corporate credit-rating using statistical and artificial intelligence (AI) techniques has received considerable research attention in the literature. In recent years, multi-class support vector machines (MSVMs) have become a very appealing machine-learning approach due to their good performance. Until now, researchers have proposed a variety of techniques for adapting support vector machines (SVMs) to multi-class classification, since SVMs were originally devised for binary classification. However, most of them have only focused on classifying samples into nominal categories; thus, the unique characteristic of credit-rating – ordinality – seldom has been considered in the proposed approaches. This study proposes a new type of MSVM classifier (named OMSVM) that is designed to extend the binary SVMs by applying an ordinal pairwise partitioning (OPP) strategy. Our model can efficiently and effectively handle multiple ordinal classes. To validate OMSVM, we applied it to a real-world case of bond rating. We compared the results of our model with those of conventional MSVM approaches and other AI techniques including MDA, MLOGIT, CBR, and ANNs. The results showed that our proposed model improves the performance of classification in comparison to other typical multi-class classification techniques and uses fewer computational resources. |
---|---|
ISSN: | 0305-0548 1873-765X 0305-0548 |
DOI: | 10.1016/j.cor.2011.06.023 |