Loading…

A QPTAS for TSP with Fat Weakly Disjoint Neighborhoods in Doubling Metrics

We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in doubling metrics. The goal is to find a shortest tour that visits each of a collection of n subsets ( regions or neighborhoods ) in the underlying metric space. We give a quasi-polynomial time approximation scheme (QPTAS) when t...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2011-12, Vol.46 (4), p.704-723
Main Authors: Chan, T.-H. Hubert, Elbassioni, Khaled
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in doubling metrics. The goal is to find a shortest tour that visits each of a collection of n subsets ( regions or neighborhoods ) in the underlying metric space. We give a quasi-polynomial time approximation scheme (QPTAS) when the regions are what we call α - fat weakly disjoint . This notion combines the existing notions of diameter variation, fatness and disjointness for geometric objects and generalizes these notions to any arbitrary metric space. Intuitively, the regions can be grouped into a bounded number of types, where in each type, the regions have similar upper bounds for their diameters, and each such region can designate a point such that these points are far away from one another. Our result generalizes the polynomial time approximation scheme (PTAS) for TSPN on the Euclidean plane by Mitchell (in SODA, pp. 11–18, 2007 ) and the QPTAS for TSP on doubling metrics by Talwar (in 36th STOC, pp. 281–290, 2004 ). We also observe that our techniques directly extend to a QPTAS for the Group Steiner Tree Problem on doubling metrics, with the same assumption on the groups.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-011-9337-9