Loading…
A weighted sum genetic algorithm to support multiple-party multiple-objective negotiations
Negotiations are a special class of group decision-making problems that can be formulated as constrained optimization problems and are characterized by high degrees of conflict among the negotiation participants. A variety of negotiation support techniques have been used to help find solutions accep...
Saved in:
Published in: | IEEE transactions on evolutionary computation 2002-08, Vol.6 (4), p.366-377 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Negotiations are a special class of group decision-making problems that can be formulated as constrained optimization problems and are characterized by high degrees of conflict among the negotiation participants. A variety of negotiation support techniques have been used to help find solutions acceptable to all parties in a negotiation. The paper presents an approach that employs a genetic algorithm (GA) for finding acceptable solutions for multiparty multiobjective negotiations. The GA approach is consistent with the complex nature of real-world negotiations and is therefore capable of addressing more realistic negotiation scenarios than previous techniques in the literature allow. In addition to the traditional genetic operators of reproduction, crossover, and mutation, the search is enhanced with a new operator called trade. The trade operator simulates concessions that might be made by parties during the negotiation process. GA performance with the trade operator is compared to a traditional GA, nonlinear programming, a hill-climber, and a random search. Experimental results show the GA with the trade operator performs better than these other more traditional approaches. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/TEVC.2002.802874 |