Loading…

Suspension and Air Plasma-Sprayed Ceramic Thermal Barrier Coatings with High Infrared Reflectance

Yttria partially stabilized zirconia (YSZ) coatings are widely used for thermal barrier coatings (TBCs) to increase operating temperature of gas turbines. In the wavelength range where most of the radiation by walls and combustion gas is emitted within the gas turbine YSZ is semitransparent leading...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied ceramic technology 2012-05, Vol.9 (3), p.561-574
Main Authors: Stuke, A., Kassner, H., Marqués, J.-L., Vassen, R., Stöver, D., Carius, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Yttria partially stabilized zirconia (YSZ) coatings are widely used for thermal barrier coatings (TBCs) to increase operating temperature of gas turbines. In the wavelength range where most of the radiation by walls and combustion gas is emitted within the gas turbine YSZ is semitransparent leading to increasing radiation heat flows into the components at increasing service temperatures. The objective of this work is to optimize the diffuse reflectance of plasma‐sprayed TBCs by improving the coating microstructure such that the reflectance of radiation is increased. As a result, a more efficient thermal screening of the underlying metallic substrate is achieved. In this work, air plasma‐sprayed and suspension plasma‐sprayed (SPS) coatings of 7% YSZ using powder of different grain size distributions and different spray parameters were deposited. The reflectance and transmittance has been investigated in the wavelength range from 0.3 to 2.5 μm. The SPS‐coatings showed the highest reflectance up to 94% at 1.5 μm wavelength. In addition, the scattering and absorption coefficients of the sprayed TBCs calculated with the Kubelka–Munk two flux model showed strong correlation with the measured porosity. By improving the microstructure, we were able to reduce thermal conductivity while increasing scattering of radiation, resulting in lower heat flow and lower temperature at the metallic substrate. These results are strengthened by numerical calculations.
ISSN:1546-542X
1744-7402
DOI:10.1111/j.1744-7402.2011.02689.x