Loading…
Theoretical analyses of nonaqueous phase liquid dissolution-induced instability in two-dimensional fluid-saturated porous media
This paper deals with the theoretical aspects of nonaqueous phase liquid (NAPL)‐dissolution‐induced instability in two‐dimensional fluid‐saturated porous media including solute dispersion effects.After some weaknesses associated with the previous work are analyzed and overcome, a comprehensive dimen...
Saved in:
Published in: | International journal for numerical and analytical methods in geomechanics 2010-12, Vol.34 (17), p.1767-1796 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the theoretical aspects of nonaqueous phase liquid (NAPL)‐dissolution‐induced instability in two‐dimensional fluid‐saturated porous media including solute dispersion effects.After some weaknesses associated with the previous work are analyzed and overcome, a comprehensive dimensionless number, known as the Zhao number, is proposed to represent the main driving force and three controlling mechanisms of an NAPL‐dissolution system that has a finite domain. The linear stability analysis is carried out to derive the critical value of the comprehensive dimensionless number of the NAPL‐dissolution system in a limit case as the ratio of the equilibrium concentration to the density of the NAPL approaches zero. As a result, a theoretical criterion that can be used to assess the instability of planar NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media of finite domains has been established. Not only can the present theoretical results be used for the theoretical understanding of the effect of solute dispersion on the instability of an NAPL‐dissolution front in the fluid‐saturated porous medium of either a finite domain or an infinite domain, but also they can be used as benchmark solutions for verifying numerical methods employed to simulate detailed morphological evolution processes of NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0363-9061 1096-9853 1096-9853 |
DOI: | 10.1002/nag.880 |