Loading…

Electrochemical synthesis of poly(o-anisidine) and its corrosion studies as a coating on aluminum alloy 3105

The synthesis of poly(o-anisidine) coatings on aluminum alloy 3105 (AA3105) surface has been investigated by using the galvanostatic method. The synthesized coatings were characterized by reflection absorption infrared (RAIR) spectroscopy, UV–visible absorption spectrometry and scanning electron mic...

Full description

Saved in:
Bibliographic Details
Published in:Progress in organic coatings 2012-07, Vol.74 (3), p.502-510
Main Authors: S.M.Ghoreishi, Shabani-Nooshabadi, M., Behpour, M., Jafari, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The synthesis of poly(o-anisidine) coatings on aluminum alloy 3105 (AA3105) surface has been investigated by using the galvanostatic method. The synthesized coatings were characterized by reflection absorption infrared (RAIR) spectroscopy, UV–visible absorption spectrometry and scanning electron microscopy (SEM). Optical absorption spectroscopy reveals the formation of the emeraldine form of poly(o-anisidine). The anticorrosion performances of poly(o-anisidine) coatings were investigated in 3.5% NaCl solution by the potentiodynamic polarization technique Tafle and electrochemical impedance spectroscopy (EIS). The corrosion rate of poly(o-anisidine)-coated AA3105 was found ∼330 times lower than bare AA3105 and potential corrosion increases from −0.85V versus SCE for uncoated AA3105 to −0.65 V versus SCE for poly(o-anisidine)-coated AA3105 electrodes. The results of this study clearly ascertain that the poly(o-anisidine) has outstanding potential to protect the AA3105 against corrosion in a chloride environment.
ISSN:0300-9440
1873-331X
DOI:10.1016/j.porgcoat.2012.01.016