Loading…
Estimator selection and combination in scalar-on-function regression
Scalar-on-function regression problems with continuous outcomes arise naturally in many settings, and a wealth of estimation methods now exist. Despite the clear differences in regression model assumptions, tuning parameter selection, and the incorporation of functional structure, it remains common...
Saved in:
Published in: | Computational statistics & data analysis 2014-02, Vol.70, p.362-372 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Scalar-on-function regression problems with continuous outcomes arise naturally in many settings, and a wealth of estimation methods now exist. Despite the clear differences in regression model assumptions, tuning parameter selection, and the incorporation of functional structure, it remains common to apply a single method to any dataset of interest. In this paper we develop tools for estimator selection and combination in the context of continuous scalar-on-function regression based on minimizing the cross-validated prediction error of the final estimator. A broad collection of functional and high-dimensional regression methods is used as a library of candidate estimators. We find that the performance of any single method relative to others can vary dramatically across datasets, but that the proposed cross-validation procedure is consistently among the top performers. Four real-data analyses using publicly available benchmark datasets are presented; code implementing these analyses and facilitating the application of proposed methods on future datasets is available in a web supplement. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2013.10.009 |