Loading…

Estimator selection and combination in scalar-on-function regression

Scalar-on-function regression problems with continuous outcomes arise naturally in many settings, and a wealth of estimation methods now exist. Despite the clear differences in regression model assumptions, tuning parameter selection, and the incorporation of functional structure, it remains common...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2014-02, Vol.70, p.362-372
Main Authors: Goldsmith, Jeff, Scheipl, Fabian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-5d62a536046d5b07528050edfd3ede67bd7aedf9059e3d366dc9ee6b3f0f85563
cites cdi_FETCH-LOGICAL-c333t-5d62a536046d5b07528050edfd3ede67bd7aedf9059e3d366dc9ee6b3f0f85563
container_end_page 372
container_issue
container_start_page 362
container_title Computational statistics & data analysis
container_volume 70
creator Goldsmith, Jeff
Scheipl, Fabian
description Scalar-on-function regression problems with continuous outcomes arise naturally in many settings, and a wealth of estimation methods now exist. Despite the clear differences in regression model assumptions, tuning parameter selection, and the incorporation of functional structure, it remains common to apply a single method to any dataset of interest. In this paper we develop tools for estimator selection and combination in the context of continuous scalar-on-function regression based on minimizing the cross-validated prediction error of the final estimator. A broad collection of functional and high-dimensional regression methods is used as a library of candidate estimators. We find that the performance of any single method relative to others can vary dramatically across datasets, but that the proposed cross-validation procedure is consistently among the top performers. Four real-data analyses using publicly available benchmark datasets are presented; code implementing these analyses and facilitating the application of proposed methods on future datasets is available in a web supplement.
doi_str_mv 10.1016/j.csda.2013.10.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671496827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313003629</els_id><sourcerecordid>1671496827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5d62a536046d5b07528050edfd3ede67bd7aedf9059e3d366dc9ee6b3f0f85563</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU89eumaJk3SghdZ1z-w4EXPIU2mkqWbrJmu4Lc3tZ49zczjvYH3I-S6oquKVvJ2t7LozIrRimdhRWl7QhZVo1ipuGCnZJFNqmxrxc_JBeKOUspq1SzIwwZHvzdjTAXCAHb0MRQmuMLGfeeD-b19KNCawaQyhrI_htmV4CMBYl4vyVlvBoSrv7kk74-bt_VzuX19elnfb0vLOR9L4SQzgktaSyc6qgRrqKDgesfBgVSdUyZfLRUtcMeldLYFkB3vad8IIfmS3Mx_Dyl-HgFHvfdoYRhMgHhEnTtWdSsbprKVzVabImKCXh9S7pm-dUX1hEzv9IRMT8gmLSPLobs5BLnEl4ek0XoIFpxPGY120f8X_wHOlXWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671496827</pqid></control><display><type>article</type><title>Estimator selection and combination in scalar-on-function regression</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Backfile Package - Decision Sciences [YDT]</source><source>ScienceDirect: Computer Science Backfile</source><creator>Goldsmith, Jeff ; Scheipl, Fabian</creator><creatorcontrib>Goldsmith, Jeff ; Scheipl, Fabian</creatorcontrib><description>Scalar-on-function regression problems with continuous outcomes arise naturally in many settings, and a wealth of estimation methods now exist. Despite the clear differences in regression model assumptions, tuning parameter selection, and the incorporation of functional structure, it remains common to apply a single method to any dataset of interest. In this paper we develop tools for estimator selection and combination in the context of continuous scalar-on-function regression based on minimizing the cross-validated prediction error of the final estimator. A broad collection of functional and high-dimensional regression methods is used as a library of candidate estimators. We find that the performance of any single method relative to others can vary dramatically across datasets, but that the proposed cross-validation procedure is consistently among the top performers. Four real-data analyses using publicly available benchmark datasets are presented; code implementing these analyses and facilitating the application of proposed methods on future datasets is available in a web supplement.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.10.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Benchmarking ; Collection ; Cross validation ; Data processing ; Estimators ; Functional linear model ; Mathematical models ; Model stacking ; Regression ; Statistics ; Super learning ; Tuning</subject><ispartof>Computational statistics &amp; data analysis, 2014-02, Vol.70, p.362-372</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-5d62a536046d5b07528050edfd3ede67bd7aedf9059e3d366dc9ee6b3f0f85563</citedby><cites>FETCH-LOGICAL-c333t-5d62a536046d5b07528050edfd3ede67bd7aedf9059e3d366dc9ee6b3f0f85563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947313003629$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3415,3426,3550,27903,27904,45951,45970,45981</link.rule.ids></links><search><creatorcontrib>Goldsmith, Jeff</creatorcontrib><creatorcontrib>Scheipl, Fabian</creatorcontrib><title>Estimator selection and combination in scalar-on-function regression</title><title>Computational statistics &amp; data analysis</title><description>Scalar-on-function regression problems with continuous outcomes arise naturally in many settings, and a wealth of estimation methods now exist. Despite the clear differences in regression model assumptions, tuning parameter selection, and the incorporation of functional structure, it remains common to apply a single method to any dataset of interest. In this paper we develop tools for estimator selection and combination in the context of continuous scalar-on-function regression based on minimizing the cross-validated prediction error of the final estimator. A broad collection of functional and high-dimensional regression methods is used as a library of candidate estimators. We find that the performance of any single method relative to others can vary dramatically across datasets, but that the proposed cross-validation procedure is consistently among the top performers. Four real-data analyses using publicly available benchmark datasets are presented; code implementing these analyses and facilitating the application of proposed methods on future datasets is available in a web supplement.</description><subject>Benchmarking</subject><subject>Collection</subject><subject>Cross validation</subject><subject>Data processing</subject><subject>Estimators</subject><subject>Functional linear model</subject><subject>Mathematical models</subject><subject>Model stacking</subject><subject>Regression</subject><subject>Statistics</subject><subject>Super learning</subject><subject>Tuning</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU89eumaJk3SghdZ1z-w4EXPIU2mkqWbrJmu4Lc3tZ49zczjvYH3I-S6oquKVvJ2t7LozIrRimdhRWl7QhZVo1ipuGCnZJFNqmxrxc_JBeKOUspq1SzIwwZHvzdjTAXCAHb0MRQmuMLGfeeD-b19KNCawaQyhrI_htmV4CMBYl4vyVlvBoSrv7kk74-bt_VzuX19elnfb0vLOR9L4SQzgktaSyc6qgRrqKDgesfBgVSdUyZfLRUtcMeldLYFkB3vad8IIfmS3Mx_Dyl-HgFHvfdoYRhMgHhEnTtWdSsbprKVzVabImKCXh9S7pm-dUX1hEzv9IRMT8gmLSPLobs5BLnEl4ek0XoIFpxPGY120f8X_wHOlXWf</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Goldsmith, Jeff</creator><creator>Scheipl, Fabian</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>Estimator selection and combination in scalar-on-function regression</title><author>Goldsmith, Jeff ; Scheipl, Fabian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5d62a536046d5b07528050edfd3ede67bd7aedf9059e3d366dc9ee6b3f0f85563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Benchmarking</topic><topic>Collection</topic><topic>Cross validation</topic><topic>Data processing</topic><topic>Estimators</topic><topic>Functional linear model</topic><topic>Mathematical models</topic><topic>Model stacking</topic><topic>Regression</topic><topic>Statistics</topic><topic>Super learning</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldsmith, Jeff</creatorcontrib><creatorcontrib>Scheipl, Fabian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldsmith, Jeff</au><au>Scheipl, Fabian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimator selection and combination in scalar-on-function regression</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>70</volume><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Scalar-on-function regression problems with continuous outcomes arise naturally in many settings, and a wealth of estimation methods now exist. Despite the clear differences in regression model assumptions, tuning parameter selection, and the incorporation of functional structure, it remains common to apply a single method to any dataset of interest. In this paper we develop tools for estimator selection and combination in the context of continuous scalar-on-function regression based on minimizing the cross-validated prediction error of the final estimator. A broad collection of functional and high-dimensional regression methods is used as a library of candidate estimators. We find that the performance of any single method relative to others can vary dramatically across datasets, but that the proposed cross-validation procedure is consistently among the top performers. Four real-data analyses using publicly available benchmark datasets are presented; code implementing these analyses and facilitating the application of proposed methods on future datasets is available in a web supplement.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2013.10.009</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2014-02, Vol.70, p.362-372
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1671496827
source ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]; Backfile Package - Decision Sciences [YDT]; ScienceDirect: Computer Science Backfile
subjects Benchmarking
Collection
Cross validation
Data processing
Estimators
Functional linear model
Mathematical models
Model stacking
Regression
Statistics
Super learning
Tuning
title Estimator selection and combination in scalar-on-function regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimator%20selection%20and%20combination%20in%20scalar-on-function%20regression&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Goldsmith,%20Jeff&rft.date=2014-02-01&rft.volume=70&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.10.009&rft_dat=%3Cproquest_cross%3E1671496827%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-5d62a536046d5b07528050edfd3ede67bd7aedf9059e3d366dc9ee6b3f0f85563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671496827&rft_id=info:pmid/&rfr_iscdi=true