Loading…

Modular forms and period polynomials

We study the space of period polynomials associated with modular forms of integral weight for finite‐index subgroups of the modular group. For the modular group, this space is endowed with a pairing, corresponding to the Petersson inner product on modular forms via a formula of Haberland, and with a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society 2013-10, Vol.107 (4), p.713-743
Main Authors: Paşol, Vicenţiu, Popa, Alexandru A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the space of period polynomials associated with modular forms of integral weight for finite‐index subgroups of the modular group. For the modular group, this space is endowed with a pairing, corresponding to the Petersson inner product on modular forms via a formula of Haberland, and with an action of Hecke operators, defined algebraically by Zagier. We generalize Haberland's formula to (not necessarily cuspidal) modular forms for finite‐index subgroups, and we show that it conceals two stronger formulas. We extend the action of Hecke operators to period polynomials of modular forms, we show that the pairing on period polynomials appearing in Haberland's formula is nondegenerate, and we determine the adjoints of Hecke operators with respect to it. We give a few applications for Γ1(N): an extension of the Eichler–Shimura isomorphism to the entire space of modular forms; the determination of the relations satisfied by the even and odd parts of period polynomials associated with cusp forms, which are independent of the period relations; and an explicit formula for Fourier coefficients of Hecke eigenforms in terms of their period polynomials, generalizing the Coefficient theorem of Manin.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms/pdt003