Loading…

Bistable arches for morphing applications

This article examines the bistable behavior of an arch for morphing applications. The arch has a cosine profile, is clamped at both ends, and is restrained axially by a spring at one end. Fabrication and testing of several Delrin and NiTiNOL arch specimens (with varying arch height, thickness, and s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent material systems and structures 2013-02, Vol.24 (3), p.274-286
Main Authors: Pontecorvo, Michael E, Barbarino, Silvestro, Murray, Gabriel J, Gandhi, Farhan S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article examines the bistable behavior of an arch for morphing applications. The arch has a cosine profile, is clamped at both ends, and is restrained axially by a spring at one end. Fabrication and testing of several Delrin and NiTiNOL arch specimens (with varying arch height, thickness, and spring stiffness) were followed by ANSYS finite element modeling, and the ANSYS simulation results showed good overall agreement with the test results. A parametric study was conducted using the ANSYS model to assess the influence of arch thickness, height, and spring stiffness on the bistable behavior. The results indicated that lower arch thickness, larger arch height, and higher spring stiffness tend to promote bistability; lower arch thickness and height reduce peak strains as the arch moves between equilibrium states, but increasing spring stiffness has a smaller effect; and higher arch thickness, height, and spring stiffness increase the snap-through force, which in turn increases the actuation force requirement as well as load carrying capability of the bistable morphing arch. If the arch slenderness ratio is unchanged, change in arch span (size) does not change the maximum stress while increasing the peak snap-through force proportionally.
ISSN:1045-389X
1530-8138
DOI:10.1177/1045389X12457252