Loading…
System-Level Calibration for Data Fusion in Wireless Sensor Networks
Wireless sensor networks are typically composed of low-cost sensors that are deeply integrated in physical environments. As a result, the sensing performance of a wireless sensor network is inevitably undermined by biases in imperfect sensor hardware and the noises in data measurements. Although a v...
Saved in:
Published in: | ACM transactions on sensor networks 2013-05, Vol.9 (3), p.1-27 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wireless sensor networks are typically composed of low-cost sensors that are deeply integrated in physical environments. As a result, the sensing performance of a wireless sensor network is inevitably undermined by biases in imperfect sensor hardware and the noises in data measurements. Although a variety of calibration methods have been proposed to address these issues, they often adopt the
device-level
approach that becomes intractable for moderate-to large-scale networks. In this article, we propose a two-tier
system-level
calibration approach for a class of sensor networks that employ data fusion to improve the sensing performance. In the first tier of our calibration approach, each sensor learns its local sensing model from noisy measurements using an online algorithm and only transmits a few model parameters. In the second tier, sensors' local sensing models are then calibrated to a common system sensing model. Our approach fairly distributes computation overhead among sensors and significantly reduces the communication overhead of calibration compared with the device-level approach. Based on this approach, we develop an
optimal
model calibration scheme that maximizes the target detection probability of a sensor network under bounded false alarm rate. Our approach is evaluated by both experiments on a testbed of TelosB motes and extensive simulations based on synthetic datasets as well as data traces collected in a real vehicle detection experiment. The results demonstrate that our system-level calibration approach can significantly boost the detection performance of sensor networks in scenarios with low signal-to-noise ratios. |
---|---|
ISSN: | 1550-4859 1550-4867 |
DOI: | 10.1145/2480730.2480731 |