Loading…
Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure
van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nit...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2013-06, Vol.340 (6139), p.1427-1430 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moiré superlattice potential in the graphene. In our samples, this interplay between short-and long-wavelength effects resulted in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality. This picture is confirmed by our observation of fractional quantum Hall states at ±5/3 filling and features associated with the Hofstadter butterfly at ultrahigh magnetic fields. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1237240 |