Loading…

Insights into molecular chemistry of Chiapas amber using infrared-light microscopy, PIXE/RBS, and sulfur K-edge XANES spectroscopy

Chiapas amber is a natural occurring fossil resin structurally composed of long macromolecule chains with semicrystalline phases associated with both fossil and polymerization process. The most conspicuous characteristic of this fossil polymer is that it preserves ancient organic inclusions. In the...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2014-07, Vol.116 (1), p.97-109
Main Authors: Riquelme, Francisco, Northrup, Paul, Ruvalcaba-Sil, José Luis, Stojanoff, Vivian, Peter Siddons, D., Alvarado-Ortega, Jesús
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chiapas amber is a natural occurring fossil resin structurally composed of long macromolecule chains with semicrystalline phases associated with both fossil and polymerization process. The most conspicuous characteristic of this fossil polymer is that it preserves ancient organic inclusions. In the present work, PIXE/RBS spectrometry (particle-induced X-ray emission/Rutherford backscattering) were combined with complementary K-edge XANES spectroscopy (X-ray absorption near-edge structure) to identify the amount of sulfur in Chiapas amber. Initially, the amber samples were examined using infrared reflected photomicrography. Amber is transparent to infrared light and so embedded plants and animals are easily visible, showing them in extraordinary detail, as if they were immersed in a water-like solution. The PIXE/RBS data show that the proportion of sulfur in amber is significantly higher than that found in recently formed resins, consistent with the biogeochemical process that transforms the resin into amber during long-term burial in geological deposits. The sulfur K-edge XANES spectra from amber confirm the sulfur abundance and reveal sulfur species in the reduced and intermediate oxidation states in amber. Almost no oxidized sulfur was found, whereas the recent resins show mostly oxidized sulfur fractions. This indicates that labile oxidized sulfur decays during fossilization and resin maturation must occur under conditions of oxygen depletion. The implications of the presence of sulfur in amber for organic preservation is also discussed here. Sulfur compounds work as a polymer additive that promotes intense resin solidification. This restricts the early oxidant-specific biodegradation of the embedded biomatter and, over geological time, provides greater stability against chemical changes.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-013-8185-2