Loading…
Counter-Anion Effect on the Properties of Anion-Conducting Polymer Electrolyte Membranes Prepared by Radiation-Induced Graft Polymerization
Graft‐type anion‐conducting polymer electrolyte membranes (AEMs) are prepared by the radiation‐induced graft polymerization of chloromethylstyrene into poly(ethylene‐co‐tetrafluoroethylene) (ETFE) films and subsequent quaternization with trimethylamine. AEMs in the hydroxide form (AEM‐OH) are prepar...
Saved in:
Published in: | Macromolecular chemistry and physics 2013-08, Vol.214 (15), p.1756-1762 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graft‐type anion‐conducting polymer electrolyte membranes (AEMs) are prepared by the radiation‐induced graft polymerization of chloromethylstyrene into poly(ethylene‐co‐tetrafluoroethylene) (ETFE) films and subsequent quaternization with trimethylamine. AEMs in the hydroxide form (AEM‐OH) are prepared by immersing the chloride form (AEM‐Cl) in 1 M potassium hydroxide (KOH) solution, followed by KOH and washing with nitrogen‐saturated water to prevent bicarbonate formation (AEM‐HCO3). The AEM‐OH shows conductivity and water uptake four and two times higher than AEM‐Cl and ‐HCO3 and is thermally and chemically less stable, resulting in the tendency to absorb water and to convert to the bicarbonate form.
Graft‐type anion‐conducting polymer electrolyte membranes are prepared to evaluate the counter‐anion effects on fuel cell properties. The hydroxide form shows conductivity and water uptake four and two times higher than the chloride and bicarbonate forms. The hydroxide form is thermally and chemically less stable, resulting in the tendency to absorb water and to convert to the bicarbonate form. |
---|---|
ISSN: | 1022-1352 1521-3935 |
DOI: | 10.1002/macp.201300225 |