Loading…

Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients

In this paper, we investigate the well-posedness and the long-time asymptotic behavior for initial-boundary value problems for multi-term time-fractional diffusion equations. The governing equation under consideration includes a linear combination of Caputo derivatives in time with decreasing orders...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2015-04, Vol.257, p.381-397
Main Authors: Li, Zhiyuan, Liu, Yikan, Yamamoto, Masahiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we investigate the well-posedness and the long-time asymptotic behavior for initial-boundary value problems for multi-term time-fractional diffusion equations. The governing equation under consideration includes a linear combination of Caputo derivatives in time with decreasing orders in (0,1) and positive constant coefficients. By exploiting several important properties of multinomial Mittag–Leffler functions, various estimates follow from the explicit solutions in form of these special functions. Then we prove the uniqueness and continuous dependency on initial values and source terms, from which we further verify the Lipschitz continuous dependency of solutions with respect to coefficients and orders of fractional derivatives. Finally, by a Laplace transform argument, it turns out that the decay rate of the solution as t→∞ is given by the minimum order of the time-fractional derivatives.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.11.073