Loading…

A class of DCT approximations based on the Feig–Winograd algorithm

A new class of matrices based on a parametrization of the Feig–Winograd factorization of 8-point DCT is proposed. Such parametrization induces a matrix subspace, which unifies a number of existing methods for DCT approximation. By solving a comprehensive multicriteria optimization problem, we identi...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing 2015-08, Vol.113, p.38-51
Main Authors: Tablada, C.J., Bayer, F.M., Cintra, R.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new class of matrices based on a parametrization of the Feig–Winograd factorization of 8-point DCT is proposed. Such parametrization induces a matrix subspace, which unifies a number of existing methods for DCT approximation. By solving a comprehensive multicriteria optimization problem, we identified several new DCT approximations. Obtained solutions were sought to possess the following properties: (i) low multiplierless computational complexity, (ii) orthogonality or near orthogonality, (iii) low complexity invertibility, and (iv) close proximity and performance to the exact DCT. Proposed approximations were submitted to assessment in terms of proximity to the DCT, coding performance, and suitability for image compression. Considering Pareto efficiency, particular new proposed approximations could outperform various existing methods archived in literature.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2015.01.011