Loading…
Preparation and degradation study of photocurable oligolactide-HA composite: A potential resin for stereolithography application
The merging of stereolithography (SLA) technology to the medical field certainly benefits the manufacturing of parts, especially those patient-specific for the clinical use. This technique, however, has hardly been exploited medically due to a limited number of biodegradable resins for SLA processin...
Saved in:
Published in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2014-04, Vol.102 (3), p.604-611 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The merging of stereolithography (SLA) technology to the medical field certainly benefits the manufacturing of parts, especially those patient-specific for the clinical use. This technique, however, has hardly been exploited medically due to a limited number of biodegradable resins for SLA processing. To extend application of SLA in the biomedical field, photocurable oligolactide resins were developed and examined for biodegradation and biocompatibility. The degradation was studied by monitoring the changes in weight loss, and thermal and mechanical properties of the photocured specimens in phosphate buffered saline (PBS) at 37°C. The results demonstrated that a resin composition played an important role in degradation, and the retarded degradation rate was observed for the highly crosslinked resin containing hydroxyapatite (HA). The less cytotoxic sample was also obtained from the resin with higher content of HA. These findings suggest the possible use of the developed photocurable oligolactide resins in SLA manufacturing of biodegradable implants, where their degradation behaviors can be designed by varying the resin composition. |
---|---|
ISSN: | 1552-4973 1552-4981 |
DOI: | 10.1002/jbm.b.33040 |