Loading…
Stability and optimality of decay rate for a weakly dissipative Bresse system
This paper is concerned with asymptotic stability of a Bresse system with two frictional dissipations. Under mathematical condition of equal speed of wave propagation, we prove that the system is exponentially stable. Otherwise, we show that Bresse system is not exponentially stable. Then, in the la...
Saved in:
Published in: | Mathematical methods in the applied sciences 2015-03, Vol.38 (5), p.898-908 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with asymptotic stability of a Bresse system with two frictional dissipations. Under mathematical condition of equal speed of wave propagation, we prove that the system is exponentially stable. Otherwise, we show that Bresse system is not exponentially stable. Then, in the latter case, by using a recent result in linear operator theory, we prove the solution decays polynomially to zero with optimal decay rate. Better rates of polynomial decay depending on the regularity of initial data are also achieved. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3115 |