Loading…

Multilevel preconditioning and low-rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs

SummaryThis paper addresses the solution of parabolic evolution equations simultaneously in space and time as may be of interest in, for example, optimal control problems constrained by such equations. As a model problem, we consider the heat equation posed on the unit cube in Euclidean space of mod...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2015-03, Vol.22 (2), p.317-337
Main Authors: Andreev, Roman, Tobler, Christine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SummaryThis paper addresses the solution of parabolic evolution equations simultaneously in space and time as may be of interest in, for example, optimal control problems constrained by such equations. As a model problem, we consider the heat equation posed on the unit cube in Euclidean space of moderately high dimension. An a priori stable minimal residual Petrov–Galerkin variational formulation of the heat equation in space–time results in a generalized least squares problem. This formulation admits a unique, quasi‐optimal solution in the natural space–time Hilbert space and serves as a basis for the development of space–time compressive solution algorithms. The solution of the heat equation is obtained by applying the conjugate gradient method to the normal equations of the generalized least squares problem. Starting from stable subspace splittings in space and in time, multilevel space–time preconditioners for the normal equations are derived. In order to reduce the complexity of the full space–time problem, all computations are performed in a compressed or sparse format called the hierarchical Tucker format, supposing that the input data are available in this format. In order to maintain sparsity, compression of the iterates within the hierarchical Tucker format is performed in each conjugate gradient iteration. Its application to vectors in the hierarchical Tucker format is detailed. Finally, numerical results in up to five spatial dimensions based on the recently developed htucker toolbox for MATLAB are presented. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.1951