Loading…
Characterization and modeling of polymeric matrix under multi-axial static and dynamic loading
A polymeric matrix (3501-6) used in composite materials was characterized under multi-axial loading at strain rates varying from quasi-static to dynamic. Tests were conducted under uniaxial compression, tension, pure shear and combinations of normal and shear stresses. Quasi-static and intermediate...
Saved in:
Published in: | Composites science and technology 2014-10, Vol.102, p.113-119 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A polymeric matrix (3501-6) used in composite materials was characterized under multi-axial loading at strain rates varying from quasi-static to dynamic. Tests were conducted under uniaxial compression, tension, pure shear and combinations of normal and shear stresses. Quasi-static and intermediate strain rate tests were conducted in a servo-hydraulic testing machine. High strain rate tests were conducted using a split Hopkinson pressure bar (Kolsky bar) system made of glass/epoxy composite bars having an impedance compatible to that of the test polymer. The typical stress–strain behavior of the polymeric matrix exhibits a linear elastic region up to a yield point, a nonlinear elastic–plastic region up to an initial peak or “critical stress,” followed by strain softening up to a local minimum, plateau or saddle point stress, and finally, a strain hardening region up to ultimate failure. A general three-dimensional elastic–viscoplastic model, formulated in strain space, was developed. The model expresses the multi-axial state of stress in terms of an effective stress, incorporates strain rate effects and includes the large deformation region. Stress–strain curves obtained under multi-axial loading at different strain rates were used to develop and validate the new elastic–viscoplastic constitutive model. Excellent agreement was shown between model predictions and experimental results. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2014.07.025 |