Loading…

Alternative Soda-Lime Glass Batch to Reduce Energy Consumption

Soda-lime glass is produced by melting sand (SiO2), soda ash (Na2CO3), lime stone (CaCO3) together with effective additives such as dolomite (CaMg(CO3)2) and an important structural modification, alumina (Al2O3) in which the melting temperature is very high around 1500°C. With this reason, to dissol...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2013-03, Vol.545, p.24-30
Main Authors: Tapasa, Kanit, Jitwatcharakomol, Tepiwan, Meechoowas, Ekarat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soda-lime glass is produced by melting sand (SiO2), soda ash (Na2CO3), lime stone (CaCO3) together with effective additives such as dolomite (CaMg(CO3)2) and an important structural modification, alumina (Al2O3) in which the melting temperature is very high around 1500°C. With this reason, to dissolve alumina, high amount of energy is needed. Consequently, one of possibilities to reduce the melting energy is replacing alumina by the raw material with a lower enthalpy of melting. The heat required for melting the batch of raw materials from atmosphere temperature to melting temperature is called exploited heat (Hex), which can be calculated from chemical enthalpy (H°chem) and heat content (Hmelt) at reference temperature (Tex). From thermodynamic approach, chemical enthalpy of alumina is higher than feldspar (KAlSiO3) or pyrophyllite (Al2Si4O10(OH)2). For the glass batch with alumina, the calculated exploited heat is 540 kWh/ton while the batch with feldspar or pyrophyllite is lower, namely 534 and 484 kWh/ton, respectively. This means that the melting process can be emerged easier than the batch with alumina because the melting point of feldspar is around 1200°C and pyrophyllite dehydroxylates around 900°C. The kinetic properties of batch melting were investigated by Batch-Free Time method, which defines the melting ability of the modified batch. According to thermodynamic calculation, it was found that both alternative batches were melted easier. The study showed that feldspar or pyrophyllite could be used instead of alumina without significant changes in glass chemical composition and physical properties. The concern of using feldspar or pyrophyllite is the quantity of minor impurities which affect to the color appearance especially in clear glass products.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.545.24