Loading…
Crystal structure of human POP1 and its distinct structural feature for PYD domain
Inflammatory caspases, such as caspase-1, which is critical for the innate immune response, are activated upon the formation of a molecular complex called the inflammasome. The inflammasome is composed of three proteins, the Nod-like receptor (NLRP, NLRC or AIM2), apoptosis associated speck-loke pro...
Saved in:
Published in: | Biochemical and biophysical research communications 2015-05, Vol.460 (4), p.957-963 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inflammatory caspases, such as caspase-1, which is critical for the innate immune response, are activated upon the formation of a molecular complex called the inflammasome. The inflammasome is composed of three proteins, the Nod-like receptor (NLRP, NLRC or AIM2), apoptosis associated speck-loke protein containing a caspase-recruitment domain (ASC), and caspase-1. ASC is an adaptor molecule that contains an N-terminal PYD domain and a C-terminal CARD domain for interaction with other proteins. Upon activation, the N-terminal PYD of ASC homotypically interacts with the PYD domain of the Nod-like receptor, while its C-terminal CARD homotypically interacts with the CARD domain of caspase-1. PYD only protein 1 (POP1) negatively regulates inflammatory response by blocking the formation of the inflammasome. POP1 directly binds to ASC via a PYD:PYD interaction, thereby preventing ASC recruitment to Nod-like receptor NLRPs. POP1-mediated regulation of inflammation is of great biological importance. Here, we report the crystal structure of human POP1 and speculate about the inhibitory mechanism of POP1-mediated inflammasome formation based on the current structure.
•We solved the crystal structure of POP1 protein.•We found distinct structural difference between death domain superfamily.•We speculate the inhibitory mechanism of POP1-mediated inflammasome formation based on the structure. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2015.03.134 |