Loading…
A dual-targeting nanocarrier based on modified chitosan micelles for tumor imaging and therapy
Conventional chemotherapy suffers from non-specificity, lack of aqueous solubility and multidrug resistance. Tumor-targeting nanotherapeutics exhibit unique advantages in the delivery of drugs specifically into tumors. Here, folic acid (FA), methionine (Met) and a near infrared (NIR) fluorescence pr...
Saved in:
Published in: | Polymer chemistry 2014-08, Vol.5 (16), p.4734-4746 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional chemotherapy suffers from non-specificity, lack of aqueous solubility and multidrug resistance. Tumor-targeting nanotherapeutics exhibit unique advantages in the delivery of drugs specifically into tumors. Here, folic acid (FA), methionine (Met) and a near infrared (NIR) fluorescence probe (cypate, ICG derivative) were all bio-conjugated to succinyl-chitosan (SC) micelles. An anti-cancer drug (paclitaxel, PTX) was loaded into the hydrophobic cores of the formed FA-Met-SC-ICG derivative (FMSCI) micelles, which were under 200 nm in size. In comparison with micelles containing a single targeting moiety (FA or Met), FA and Met co-mediated micelles presented excellent biocompatibility, much higher affinity for cancer cells and excellent tumor-specific distribution in tumor-bearing mice. In vivo anti-tumor activity demonstrated that PTX-loaded FMSCI provided favourable therapeutic efficacy for tumors. In this research, novel nanotherapeutics based on FMSCI loaded with an anti-cancer drug provide a promising nanocomposite for combined tumor-targeting imaging and therapy. |
---|---|
ISSN: | 1759-9954 1759-9962 |
DOI: | 10.1039/C4PY00495G |