Loading…
Physical dissipation and the method of controlled Lagrangians
We describe the effect of physical dissipation on stability of equilibria which have been stabilized, in the absence of damping, using the method of controlled Lagrangians. This method applies to a class of underactuated mechanical systems including "balance" systems such as the pendulum o...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the effect of physical dissipation on stability of equilibria which have been stabilized, in the absence of damping, using the method of controlled Lagrangians. This method applies to a class of underactuated mechanical systems including "balance" systems such as the pendulum on a cart. Since the method involves modifying a system's kinetic energy metric through feedback, the effect of dissipation is obscured. In particular, it is not generally true that damping makes a feedback-stabilized equilibrium asymptotically stable. Damping in the unactuated directions does tend to enhance stability, however damping in the controlled directions must be "reversed" through feedback. In this paper, we suggest a choice of feedback dissipation to locally exponentially stabilize a class of controlled Lagrangian systems. |
---|---|
DOI: | 10.23919/ECC.2001.7076315 |