Loading…
Predicting Nonlinear Pharmacokinetics of Omeprazole Enantiomers and Racemic Drug Using Physiologically Based Pharmacokinetic Modeling and Simulation: Application to Predict Drug/Genetic Interactions
ABSTRACT Purpose The objective of this study is to develop a physiologically-based pharmacokinetic (PBPK) model for each omeprazole enantiomer that accounts for nonlinear PK of the two enantiomers as well as omeprazole racemic drug. Methods By integrating in vitro , in silico and human PK data, we f...
Saved in:
Published in: | Pharmaceutical research 2014-08, Vol.31 (8), p.1919-1929 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Purpose
The objective of this study is to develop a physiologically-based pharmacokinetic (PBPK) model for each omeprazole enantiomer that accounts for nonlinear PK of the two enantiomers as well as omeprazole racemic drug.
Methods
By integrating
in vitro
,
in silico
and human PK data, we first developed PBPK models for each enantiomer. Simulation of racemic omeprazole PK was accomplished by combining enantiomer models that allow mutual drug interactions to occur.
Results
The established PBPK models for the first time satisfactorily predicted the nonlinear PK of esomeprazole, R-omeprazole and the racemic drug. The modeling exercises revealed that the strong time-dependent inhibition of CYP2C19 by esomeprazole greatly altered the R-omeprazole PK following administration of racemic omeprazole as in contrast to R-omeprazole given alone. When PBPK models incorporated both autoinhibition of each enantiomer and mutual interactions, the ratios between predicted and observed AUC following single and multiple dosing of omeprazole were 0.97 and 0.94, respectively.
Conclusions
PBPK models of omeprazole enantiomers and racemic drug were developed. These models can be utilized to assess CYP2C19-mediated drug and genetic interaction potential for omeprazole and esomeprazole. |
---|---|
ISSN: | 0724-8741 1573-904X |
DOI: | 10.1007/s11095-013-1293-z |