Loading…

Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors

Experimental and simulated performance factors for a 48-in.- diameter butterfly valve were compared for various valve openings and flow conditions to determine the validity of using computational fluid dynamics (CFD) to predict butterfly valve performance factors such as pressure drop, hydrodynamic...

Full description

Saved in:
Bibliographic Details
Published in:Journal - American Water Works Association 2015-05, Vol.107 (5), p.E243-E254
Main Authors: Del Toro, Adam, Johnson, Michael C., Spall, Robert E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3982-d2402a0b4e75f280fc20b2c61dc3361128725f2f63887de468b00047f976898a3
cites cdi_FETCH-LOGICAL-c3982-d2402a0b4e75f280fc20b2c61dc3361128725f2f63887de468b00047f976898a3
container_end_page E254
container_issue 5
container_start_page E243
container_title Journal - American Water Works Association
container_volume 107
creator Del Toro, Adam
Johnson, Michael C.
Spall, Robert E.
description Experimental and simulated performance factors for a 48-in.- diameter butterfly valve were compared for various valve openings and flow conditions to determine the validity of using computational fluid dynamics (CFD) to predict butterfly valve performance factors such as pressure drop, hydrodynamic torque, flow coefficient, loss coefficient, and torque coefficient. Experimental data for the butterfly valve were obtained from the Utah Water Research Lab. Simulations were carried out on three-dimensional models of the valve using general-purpose CFD code STAR-CCM+. Results show that for mid-open valve positions (30–60 degrees), CFD adequately predicted butterfly valve performance factors. For lower valve-angle cases (10–20 degrees), CFD simulations failed to reasonably predict those same values, while higher valveopening angles (70–90 degrees) gave mixed results. However, CFD simulations can provide engineers the ability to understand and predict valve performance, especially when laboratory testing may not be possible.
doi_str_mv 10.5942/jawwa.2015.107.0052
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691282682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>jamewatworass.107.5.e243</jstor_id><sourcerecordid>jamewatworass.107.5.e243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3982-d2402a0b4e75f280fc20b2c61dc3361128725f2f63887de468b00047f976898a3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwC1gisbAk-DNxxlJaqFQJkICyWa7joERJXOykUf89blMxMDFZ53ue090LwDWCEUspvitl38sIQ8QiBJMIQoZPwAgxhkLOCTkFIwghCRGDn-fgwrnSl4ghOgKvU1Nvula2hWlkFcyrrsiCh10j60K5YNFstWuLr0M7MHlw37Wttnm1Cz5ktdXBiy-MrWWjdDCXqjXWXYKzXFZOXx3fMXifz96mT-Hy-XExnSxDRVKOwwxTiCVcU52wHHOYKwzXWMUoU4TECGGeYN_IY8J5kmka87VfmiZ5msQ85ZKMwe0wd2PNd-fXFHXhlK4q2WjTOYHi1A_BMccevfmDlqaz_t49xUmaUppQT5GBUtY4Z3UuNraopd0JBMU-ZnGIWexj9l-J2MfsrXSw-qLSu_8oYrJaTY5uOLil88n9uqWsdS_b3ljp3EFjYoYpIT9jvpJa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683994474</pqid></control><display><type>article</type><title>Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>JSTOR Archival Journals</source><creator>Del Toro, Adam ; Johnson, Michael C. ; Spall, Robert E.</creator><creatorcontrib>Del Toro, Adam ; Johnson, Michael C. ; Spall, Robert E.</creatorcontrib><description>Experimental and simulated performance factors for a 48-in.- diameter butterfly valve were compared for various valve openings and flow conditions to determine the validity of using computational fluid dynamics (CFD) to predict butterfly valve performance factors such as pressure drop, hydrodynamic torque, flow coefficient, loss coefficient, and torque coefficient. Experimental data for the butterfly valve were obtained from the Utah Water Research Lab. Simulations were carried out on three-dimensional models of the valve using general-purpose CFD code STAR-CCM+. Results show that for mid-open valve positions (30–60 degrees), CFD adequately predicted butterfly valve performance factors. For lower valve-angle cases (10–20 degrees), CFD simulations failed to reasonably predict those same values, while higher valveopening angles (70–90 degrees) gave mixed results. However, CFD simulations can provide engineers the ability to understand and predict valve performance, especially when laboratory testing may not be possible.</description><identifier>ISSN: 0003-150X</identifier><identifier>EISSN: 1551-8833</identifier><identifier>DOI: 10.5942/jawwa.2015.107.0052</identifier><identifier>CODEN: JAWWA5</identifier><language>eng</language><publisher>Denver: American Water Works Association</publisher><subject>butterfly valve ; Butterfly Valves ; CFD ; computational fluid dynamics ; Fluid dynamics ; Hydrodynamics ; Laboratory tests ; performance factors ; Pneumatics ; Simulation ; Testing ; Valves ; Water</subject><ispartof>Journal - American Water Works Association, 2015-05, Vol.107 (5), p.E243-E254</ispartof><rights>2015 American Water Works Association</rights><rights>2015 American Water Works Association</rights><rights>Copyright American Water Works Association May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3982-d2402a0b4e75f280fc20b2c61dc3361128725f2f63887de468b00047f976898a3</citedby><cites>FETCH-LOGICAL-c3982-d2402a0b4e75f280fc20b2c61dc3361128725f2f63887de468b00047f976898a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/jamewatworass.107.5.e243$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/jamewatworass.107.5.e243$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,58210,58443</link.rule.ids></links><search><creatorcontrib>Del Toro, Adam</creatorcontrib><creatorcontrib>Johnson, Michael C.</creatorcontrib><creatorcontrib>Spall, Robert E.</creatorcontrib><title>Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors</title><title>Journal - American Water Works Association</title><description>Experimental and simulated performance factors for a 48-in.- diameter butterfly valve were compared for various valve openings and flow conditions to determine the validity of using computational fluid dynamics (CFD) to predict butterfly valve performance factors such as pressure drop, hydrodynamic torque, flow coefficient, loss coefficient, and torque coefficient. Experimental data for the butterfly valve were obtained from the Utah Water Research Lab. Simulations were carried out on three-dimensional models of the valve using general-purpose CFD code STAR-CCM+. Results show that for mid-open valve positions (30–60 degrees), CFD adequately predicted butterfly valve performance factors. For lower valve-angle cases (10–20 degrees), CFD simulations failed to reasonably predict those same values, while higher valveopening angles (70–90 degrees) gave mixed results. However, CFD simulations can provide engineers the ability to understand and predict valve performance, especially when laboratory testing may not be possible.</description><subject>butterfly valve</subject><subject>Butterfly Valves</subject><subject>CFD</subject><subject>computational fluid dynamics</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Laboratory tests</subject><subject>performance factors</subject><subject>Pneumatics</subject><subject>Simulation</subject><subject>Testing</subject><subject>Valves</subject><subject>Water</subject><issn>0003-150X</issn><issn>1551-8833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwC1gisbAk-DNxxlJaqFQJkICyWa7joERJXOykUf89blMxMDFZ53ue090LwDWCEUspvitl38sIQ8QiBJMIQoZPwAgxhkLOCTkFIwghCRGDn-fgwrnSl4ghOgKvU1Nvula2hWlkFcyrrsiCh10j60K5YNFstWuLr0M7MHlw37Wttnm1Cz5ktdXBiy-MrWWjdDCXqjXWXYKzXFZOXx3fMXifz96mT-Hy-XExnSxDRVKOwwxTiCVcU52wHHOYKwzXWMUoU4TECGGeYN_IY8J5kmka87VfmiZ5msQ85ZKMwe0wd2PNd-fXFHXhlK4q2WjTOYHi1A_BMccevfmDlqaz_t49xUmaUppQT5GBUtY4Z3UuNraopd0JBMU-ZnGIWexj9l-J2MfsrXSw-qLSu_8oYrJaTY5uOLil88n9uqWsdS_b3ljp3EFjYoYpIT9jvpJa</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Del Toro, Adam</creator><creator>Johnson, Michael C.</creator><creator>Spall, Robert E.</creator><general>American Water Works Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20150501</creationdate><title>Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors</title><author>Del Toro, Adam ; Johnson, Michael C. ; Spall, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3982-d2402a0b4e75f280fc20b2c61dc3361128725f2f63887de468b00047f976898a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>butterfly valve</topic><topic>Butterfly Valves</topic><topic>CFD</topic><topic>computational fluid dynamics</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Laboratory tests</topic><topic>performance factors</topic><topic>Pneumatics</topic><topic>Simulation</topic><topic>Testing</topic><topic>Valves</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Toro, Adam</creatorcontrib><creatorcontrib>Johnson, Michael C.</creatorcontrib><creatorcontrib>Spall, Robert E.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal - American Water Works Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Toro, Adam</au><au>Johnson, Michael C.</au><au>Spall, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors</atitle><jtitle>Journal - American Water Works Association</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>107</volume><issue>5</issue><spage>E243</spage><epage>E254</epage><pages>E243-E254</pages><issn>0003-150X</issn><eissn>1551-8833</eissn><coden>JAWWA5</coden><abstract>Experimental and simulated performance factors for a 48-in.- diameter butterfly valve were compared for various valve openings and flow conditions to determine the validity of using computational fluid dynamics (CFD) to predict butterfly valve performance factors such as pressure drop, hydrodynamic torque, flow coefficient, loss coefficient, and torque coefficient. Experimental data for the butterfly valve were obtained from the Utah Water Research Lab. Simulations were carried out on three-dimensional models of the valve using general-purpose CFD code STAR-CCM+. Results show that for mid-open valve positions (30–60 degrees), CFD adequately predicted butterfly valve performance factors. For lower valve-angle cases (10–20 degrees), CFD simulations failed to reasonably predict those same values, while higher valveopening angles (70–90 degrees) gave mixed results. However, CFD simulations can provide engineers the ability to understand and predict valve performance, especially when laboratory testing may not be possible.</abstract><cop>Denver</cop><pub>American Water Works Association</pub><doi>10.5942/jawwa.2015.107.0052</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-150X
ispartof Journal - American Water Works Association, 2015-05, Vol.107 (5), p.E243-E254
issn 0003-150X
1551-8833
language eng
recordid cdi_proquest_miscellaneous_1691282682
source Wiley-Blackwell Read & Publish Collection; JSTOR Archival Journals
subjects butterfly valve
Butterfly Valves
CFD
computational fluid dynamics
Fluid dynamics
Hydrodynamics
Laboratory tests
performance factors
Pneumatics
Simulation
Testing
Valves
Water
title Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T05%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Fluid%20Dynamics%20Investigation%20of%20Butterfly%20Valve%20Performance%20Factors&rft.jtitle=Journal%20-%20American%20Water%20Works%20Association&rft.au=Del%20Toro,%20Adam&rft.date=2015-05-01&rft.volume=107&rft.issue=5&rft.spage=E243&rft.epage=E254&rft.pages=E243-E254&rft.issn=0003-150X&rft.eissn=1551-8833&rft.coden=JAWWA5&rft_id=info:doi/10.5942/jawwa.2015.107.0052&rft_dat=%3Cjstor_proqu%3Ejamewatworass.107.5.e243%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3982-d2402a0b4e75f280fc20b2c61dc3361128725f2f63887de468b00047f976898a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683994474&rft_id=info:pmid/&rft_jstor_id=jamewatworass.107.5.e243&rfr_iscdi=true