Loading…

Inverse Gas Chromatographic Study of Sorption Thermodynamics in Thermally Rearranged Polymer Based on 2,2-Bis(3-amino-4-hydroxyphenyl)-hexafluoropropane and 4,4′-Hexafluoroisopropylidene Diphthalic Anhydride

This work reports the first investigation using the inverse gas chromatography method of a polyimide precursor and the product of its thermal rearrangement (TR polymer), extensively studied earlier. Sorption of gases (CO2, C2H6, C3H8) was studied at the finite dilution regime, while vapors (n-alkane...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2013-08, Vol.52 (31), p.10467-10475
Main Authors: Belov, Nikolay A, Nizhegorodova, Yulia A, Kim, Seungju, Han, Sang Hoon, Yampolskii, Yuri P, Lee, Young Moo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work reports the first investigation using the inverse gas chromatography method of a polyimide precursor and the product of its thermal rearrangement (TR polymer), extensively studied earlier. Sorption of gases (CO2, C2H6, C3H8) was studied at the finite dilution regime, while vapors (n-alkanes C7, C8, C10, C14, C16) were investigated at infinite dilution. It was demonstrated that thermal treatment at 450 °C results in a significant increase in the solubility coefficients S for large gas molecules. The absolute values observed for the TR polymer solubility coefficients of solutes are significant and comparable with those for the polymer of intrinsic microporosity (PIM-1), the polymer known by the greatest S values among all of the polymers studied. Sorption thermodynamics in the TR polymer is distinguished by very large and negative mixing parameters: enthalpy h̅ 1 E,∞ and entropy s̅ 1 E,∞.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie3034027